## James R Usherwood

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1818159/publications.pdf
Version: 2024-02-01


Legs as linkages: an alternative paradigm for the role of tendons and isometric muscles in facilitating


5 Minimalist analogue robot discovers animal-like walking gaits. Bioinspiration and Biomimetics, 2020,

6 Why are the fastest runners of intermediate size? Contrasting scaling of mechanical demands and
19 Identification of mouse gaits using a novel force-sensing exercise wheel. Journal of Applied 2.5 ..... 17
Physiology, 2015, 119, 704-718.7.1Matching times of leading and following suggest cooperation through direct reciprocity during$20 \quad V$-formation flight in ibis. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2015, 112, 2115-2120.104
21 Leap and Strike kinetics of an acoustically 'hunting' barn owl Tyto alba. Journal of Experimental ..... 1.7
Biology, 2014, 217, 3002-5.Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature, 2014,505, 399-402.
Constraints on muscle performance provide a novel explanation for the scaling of posture in ..... 2.3
terrestrial animals. Biology Letters, 2013, 9, 20130414. 232.39
Vaulting mechanics successfully predict decrease in walkâ€"run transition speed with incline. Biology
Letters, 2013, 9, 20121121.The human foot and heelâ€"soleâ€"toe walking strategy: a mechanism enabling an inverted pendular gaitwith low isometric muscle force?. Journal of the Royal Society Interface, 2012, 9, 2396-2402.$3.4 \quad 55$25Energetically optimal running requires torques about the centre of mass. Journal of the RoyalSociety Interface, 2012, 9, 2011-2015.$3.4 \quad 14$
27 The extraordinary athletic performance of leaping gibbons. Biology Letters, 2012, 8, 46-49. ..... 2.3 ..... 16
Microparticle formation after coâ€eulture of human whole blood and umbilical artery in a novel in28 vitro model of flow. Cytometry Part A: the Journal of the International Society for Analytical1.513Cytology, 2012, 81A, 390-399.
29 Flying in a flock comes at a cost in pigeons. Nature, 2011, 474, 494-497. ..... 27.8 ..... 118
Two explanations for the compliant running paradox: reduced work of bouncing viscera and2.375
increased stability in uneven terrain. Biology Letters, 2010, 6, 418-421.Inverted pendular running: a novel gait predicted by computer optimization is found between walk and2.313run in birds. Biology Letters, 2010, 6, 765-768.Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing thepower requirements of loiter. Bioinspiration and Biomimetics, 2009, 4, 015003.

The aerodynamic forces and pressure distribution of a revolving pigeon wing. Experiments in Fluids, 2009, 46, 991-1003.

> Collared doves <i>Streptopelia decaocto</i> display with high, nearâ€maximal muscle powers, but at
> low energetic cost. Journal of Avian Biology, 2008, 39, 19-23.
Compass gait mechanics account for top walking speeds in ducks and humans. Journal of Experimental
Biology, 2008, $211,3744-3749$.

Collared doves Streptolelia decaocto display with high, near-maximal muscle powers, but at low
39 energetic cost. Journal of Avian Biology, 2007, .
$1.2 \quad 1$

40 POLARIZED SQUID. Journal of Experimental Biology, 2007, 210, iv-iv.
1.7

0

41 Accounting for elite indoor 200â€Šm sprint results. Biology Letters, 2006, 2, 47-50.
$2.3 \quad 53$

Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change
in substrate height. Journal of Experimental Biology, 2006, 209, 171-187.
1.7

134

43 No force limit on greyhound sprint speed. Nature, 2005, 438, 753-754.
27.8

103

44 Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic
implications. Journal of Experimental Biology, 2005, 208, 355-369.

45 Why not walk faster?. Biology Letters, 2005, 1, 338-341.
2.3

46

46 Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force 46 production in cockatiels (<i>Nymphicus hollandicus</i>)flying across a range of speeds. Journal of
1.7

112
Experimental Biology, 2004, 207, 1689-1702.
$47 \quad$ Gait transition cost in humans. European Journal of Applied Physiology, 2003, 90, 647-650. 2.5

48 Mechanisms of force and power production in unsteady ricochetal brachiation. American Journal of Physical Anthropology, 2003, 120, 364-372.
2.1

29

| 49 MORE THAN A FLITTING TOUR OF FLAPPING FLICHT. Journal of Experimental Biology, 2003, 206, $2095-2096$. | 1.7 |
| :--- | :--- |
| $50 \quad$Understanding brachiation: insight from a collisional perspective. Journal of Experimental Biology, <br> $2003,206,1631-1642$. |  |

$\square$
The aerodynamics of revolving wings I. Model hawkmoth wings. Journal of Experimental Biology,
2002, 205, 1547-1564.

[^0]1.7


[^0]:    The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of
    Experimental Biology, 2002, 205, 1565-1576.

