Mikael Skurnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816945/publications.pdf

Version: 2024-02-01

210 papers 10,530 citations

54 h-index 91 g-index

221 all docs

221 docs citations

times ranked

221

7885 citing authors

#	Article	IF	CITATIONS
1	Bacterial polysaccharide synthesis and gene nomenclature. Trends in Microbiology, 1996, 4, 495-503.	7.7	508
2	Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE, 2017, 12, e0173004.	2.5	340
3	Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature, 1988, 334, 522-525.	27.8	278
4	A Novel Erythromycin Resistance Methylase Gene (<i>ermTR</i>) in <i>Streptococcus pyogenes</i> Antimicrobial Agents and Chemotherapy, 1998, 42, 257-262.	3.2	254
5	The surface-located YopN protein is involved in calcium signal transduction inYersinia pseudotuberculosis. Molecular Microbiology, 1991, 5, 977-986.	2.5	252
6	YadA, the multifaceted adhesin. International Journal of Medical Microbiology, 2001, 291, 209-218.	3.6	224
7	Phage therapy: Facts and fiction. International Journal of Medical Microbiology, 2006, 296, 5-14.	3.6	215
8	Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Molecular Microbiology, 2000, 37, 316-330.	2.5	212
9	Analysis of the yopA gene encoding the Yop1 virulence determinants of Yersinia spp Molecular Microbiology, 1989, 3, 517-529.	2.5	204
10	Direct Amplification of rRNA Genes in Diagnosis of Bacterial Infections. Journal of Clinical Microbiology, 2000, 38, 32-39.	3.9	191
11	Bacteriophage φYeO3-12, Specific forYersinia enterocolitica Serotype O:3, Is Related to Coliphages T3 and T7. Journal of Bacteriology, 2000, 182, 5114-5120.	2.2	188
12	Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharmaceutical Research, 2015, 32, 2173-2179.	3.5	176
13	The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel \hat{l}^2 -roll. EMBO Journal, 2004, 23, 701-711.	7.8	175
14	Biotechnological challenges of phage therapy. Biotechnology Letters, 2007, 29, 995-1003.	2.2	164
15	Parallel independent evolution of pathogenicity within the genus <i>Yersinia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6768-6773.	7.1	154
16	Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Molecular Microbiology, 2000, 37, 67-80.	2.5	152
17	Erythromycin Resistance Genes in Group A Streptococci in Finland. Antimicrobial Agents and Chemotherapy, 1999, 43, 48-52.	3.2	149
18	Molecular and chemical characterization of the lipopolysaccharide Oâ€antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. Molecular Microbiology, 1997, 23, 63-76.	2.5	148

#	Article	IF	CITATIONS
19	Hydrophobic domains affect the collagen-binding specificity and surface polymerization as well as the virulence potential of the YadA protein of Yersinia enterocolitica. Molecular Microbiology, 1993, 10, 995-1011.	2.5	142
20	A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis. Molecular Microbiology, 1995, 17, 575-594.	2.5	133
21	Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Molecular Microbiology, 2004, 52, 451-469.	2.5	120
22	Absence of the Endothelial Oxidase AOC3 Leads to Abnormal Leukocyte Traffic In Vivo. Immunity, 2005, 22, 105-115.	14.3	118
23	Use of the Polymerase Chain Reaction and DNA Sequencing for Detection of Bartonella quintana in the Aortic Valve of a Patient with Culture-Negative Infective Endocarditis. Clinical Infectious Diseases, 1995, 21, 891-896.	5.8	110
24	Yersinia enterocolitica Serum Resistance Proteins YadA and Ail Bind the Complement Regulator C4b-Binding Protein. PLoS Pathogens, 2008, 4, e1000140.	4.7	109
25	Phage Therapy of <i>Mycobacterium</i> Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clinical Infectious Diseases, 2023, 76, 103-112.	5.8	109
26	Application of the polymerase chain reaction and immunofluorescence techniques to the detection of bacteria inYersinia-triggered reactive arthritis. Arthritis and Rheumatism, 1991, 34, 89-96.	6.7	108
27	Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non–transferrin-bound iron. Blood, 2017, 130, 245-257.	1.4	105
28	Different Erythromycin Resistance Mechanisms in Group C and Group G Streptococci. Antimicrobial Agents and Chemotherapy, 1998, 42, 1493-1494.	3.2	103
29	The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Molecular Microbiology, 1999, 31, 1443-1462.	2.5	103
30	Bacterial 16S rDNA polymerase chain reaction in the detection of intra-amniotic infection. BJOG: an International Journal of Obstetrics and Gynaecology, 1996, 103, 664-669.	2.3	98
31	Yersinia–triggered reactive arthritis. use of polymerase chain reaction and immunocytochemical staining in the detection of bacterial components from synovial specimens. Arthritis and Rheumatism, 1992, 35, 682-687.	6.7	97
32	Functional Characterization of Gne (UDP- N -Acetylglucosamine- 4-Epimerase), Wzz (Chain Length) Tj ETQq0 0 0 r Bacteriology, 2002, 184, 4277-4287.	rgBT /Overl 2.2	lock 10 Tf 50 96
33	LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. Journal of Bacteriology, 1992, 174, 2047-2051.	2.2	93
34	Role of YadA, Ail, and Lipopolysaccharide in Serum Resistance of Yersinia enterocolitica Serotype O:3. Infection and Immunity, 2005, 73, 2232-2244.	2.2	91
35	Complete Nucleotide Sequence and Likely Recombinatorial Origin of Bacteriophage T3. Journal of Molecular Biology, 2002, 319, 1115-1132.	4.2	90
36	Lack of correlation between the presence of plasmids and fimbriae in <i>Yersinia enterocolitica</i> and <i>Yersinia pseudotuberculosis</i> . Journal of Applied Bacteriology, 1984, 56, 355-363.	1.1	89

3

#	Article	IF	Citations
37	Yersiniophage ϕR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology (United Kingdom), 2005, 151, 4093-4102.	1.8	89
38	Comparison of polymerase chain reaction with culture and enzyme immunoassay for diagnosis of pertussis. Journal of Clinical Microbiology, 1993, 31, 642-645.	3.9	89
39	Identification of the Lipopolysaccharide Core of Yersinia pestis and Yersinia pseudotuberculosis as the Receptor for Bacteriophage φA1122. Journal of Bacteriology, 2011, 193, 4963-4972.	2.2	87
40	Population structure of the <i>Yersinia pseudotuberculosis</i> complex according to multilocus sequence typing. Environmental Microbiology, 2011, 13, 3114-3127.	3.8	84
41	Complete Genomic Sequence of the Lytic Bacteriophage φYeO3-12 of Yersinia enterocolitica Serotype O:3. Journal of Bacteriology, 2001, 183, 1928-1937.	2.2	83
42	Use of O-Antigen Gene Cluster-Specific PCRs for the Identification and O-Genotyping of Yersinia pseudotuberculosis and Yersinia pestis. Journal of Clinical Microbiology, 2003, 41, 5103-5112.	3.9	82
43	The biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic Yersiniae. Carbohydrate Research, 2003, 338, 2521-2529.	2.3	80
44	The lcrE gene is part of an operon in the lcr region of Yersinia enterocolitica O:3. Journal of Bacteriology, 1990, 172, 3152-3162.	2.2	79
45	Detection and quantification of five major periodontal pathogens by single copy gene-based real-time PCR. Innate Immunity, 2009, 15, 195-204.	2.4	77
46	Intervening sequences (IVSs) in the 23S ribosomal RNA genes of pathogenic Yersinia enterocolitica strains. The IVSs in Y enterocolitica and Salmonella typhimurium have a common origin. Molecular Microbiology, 1991, 5, 585-593.	2.5	73
47	RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses, 2016, 8, 111.	3.3	72
48	Functional mapping of the Yersinia enterocolitica adhesin YadA. Identification of eight NSVAIG - S motifs in the amino-terminal half of the protein involved in collagen binding. Molecular Microbiology, 2000, 37, 192-206.	2.5	70
49	Characterization of Complement Factor H Binding to <i>Yersinia enterocolitica</i> Serotype O:3. Infection and Immunity, 2008, 76, 4100-4109.	2.2	67
50	Plasminogen Activator Pla of Yersinia pestis Utilizes Murine DEC-205 (CD205) as a Receptor to Promote Dissemination. Journal of Biological Chemistry, 2008, 283, 31511-31521.	3.4	61
51	Expression cloning of Yersinia enterocolitica 0 : 3 rfb gene cluster in Escherichia coli K12. Microbial Pathogenesis, 1991, 10, 47-59.	2.9	58
52	Yersinia enterocolitica Adhesin A Induces Production of Interleukin-8 in Epithelial Cells. Infection and Immunity, 2004, 72, 6780-6789.	2.2	58
53	Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. European Journal of Clinical Microbiology and Infectious Diseases, 2007, 26, 207-211.	2.9	58
54	The effect of growth temperature on the biosynthesis of Yersinia enterocolitica 0:3 lipopolysaccharide: temperature regulates the transcription of the rfb but not of the rfa region. Microbial Pathogenesis, 1991, 10, 81-86.	2.9	57

#	Article	IF	CITATIONS
55	Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Molecular Microbiology, 2002, 44, 1045-1062.	2.5	57
56	Unique Cell Adhesion and Invasion Properties of Yersinia enterocolitica O:3, the Most Frequent Cause of Human Yersiniosis. PLoS Pathogens, 2011, 7, e1002117.	4.7	57
57	Bacterial PCR in the diagnosis of joint infection. Annals of the Rheumatic Diseases, 2001, 60, 287-289.	0.9	56
58	Human Dendritic Cell-Specific Intercellular Adhesion Molecule-Grabbing Nonintegrin (CD209) Is a Receptor for <i>Yersinia pestis</i> That Promotes Phagocytosis by Dendritic Cells. Infection and Immunity, 2008, 76, 2070-2079.	2.2	56
59	Adhesins of Human Pathogens from the Genus Yersinia. Advances in Experimental Medicine and Biology, 2011, 715, 1-15.	1.6	56
60	Functional Mapping of YadA- and Ail-Mediated Binding of Human Factor H to <i>Yersinia enterocolitica</i> Serotype O:3. Infection and Immunity, 2008, 76, 5016-5027.	2.2	55
61	The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Frontiers in Microbiology, 2019, 10, 1674.	3.5	55
62	Detection of herpesviruses by polymerase chain reaction in lymphocytes from patients with rheumatoid arthritis. Arthritis and Rheumatism, 1993, 36, 1080-1086.	6.7	53
63	Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 287-298.	2.3	53
64	Characterization of vB_SauM-fRuSauO2, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail. Viruses, 2017, 9, 258.	3.3	51
65	Does parvovirus B19 have a role in rheumatoid arthritis?. Annals of the Rheumatic Diseases, 1994, 53, 106-111.	0.9	50
66	<i>Yersinia</i> adhesins: An arsenal for infection. Proteomics - Clinical Applications, 2016, 10, 949-963.	1.6	49
67	Construction of Urease-Negative Mutants of Yersinia enterocolitica Serotypes O:3 and O:8: Role of Urease in Virulence and Arthritogenicity. Infection and Immunity, 2000, 68, 942-947.	2.2	48
68	Isolation and structural characterization of an R-form lipopolysaccharide from Yersinia enterocolitica serotype O:8. FEBS Journal, 2001, 268, 554-564.	0.2	47
69	Molecular genetics and biochemistry of <i>Yersinia</i> lipopolysaccharide. Apmis, 1996, 104, 849-872.	2.0	45
70	A novel dihydrofolate reductase cassette inserted in an integron borne on a Tn21-like element. Antimicrobial Agents and Chemotherapy, 1993, 37, 1297-1304.	3.2	44
71	Validated 5′ Nuclease PCR Assay for Rapid Identification of the Genus Brucella. Journal of Clinical Microbiology, 2004, 42, 2261-2263.	3.9	44
72	Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and iR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF. Applied and Environmental Microbiology, 2016, 82, 5340-5353.	3.1	44

#	Article	IF	Citations
73	Role of the <i>Yersinia</i> outer membrane protein YadA in adhesion to rabbit intestinal tissue and rabbit intestinal brush border membrane vesicles. Apmis, 1991, 99, 226-232.	2.0	43
74	Characterization of Streptomyces nogalater genes encoding enzymes involved in glycosylation steps in nogalamycin biosynthesis. Molecular Genetics and Genomics, 1997, 256, 203-209.	2.4	42
75	The <i>ail</i> Gene Is Present in Some <i>Yersinia enterocolitica</i> Biotype 1A Strains. Foodborne Pathogens and Disease, 2011, 8, 455-457.	1.8	40
76	Clinical isolates of Yersinia enterocolitica Biotype 1A represent two phylogenetic lineages with differing pathogenicity-related properties. BMC Microbiology, 2012, 12, 208.	3.3	40
77	Yersinia enterocolitica lipopolysaccharide: genetics and virulence. Trends in Microbiology, $1993, 1, 148-152$.	7.7	39
78	The gene cluster directing O-antigen biosynthesis in Yersinia enterocolitica serotype O:8: identification of the genes for mannose and galactose biosynthesis and the gene for the O-antigen polymerase. Microbiology (United Kingdom), 1996, 142, 277-288.	1.8	39
79	Analysis of genetic localization of the type I trimethoprim resistance gene from Escherichia coli isolated in Finland. Antimicrobial Agents and Chemotherapy, 1991, 35, 1562-1569.	3.2	38
80	Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunology and Cell Biology, 2015, 93, 815-824.	2.3	38
81	Deciphering the Antibacterial Mode of Action of Alpha-Mangostin on Staphylococcus epidermidis RP62A Through an Integrated Transcriptomic and Proteomic Approach. Frontiers in Microbiology, 2019, 10, 150.	3.5	38
82	First Analysis of a Bacterial Collagen-Binding Protein with Collagen Toolkits: Promiscuous Binding of YadA to Collagens May Explain How YadA Interferes with Host Processes. Infection and Immunity, 2010, 78, 3226-3236.	2.2	37
83	Multilocus Variable-Number Tandem-Repeat Analysis, Pulsed-Field Gel Electrophoresis, and Antimicrobial Susceptibility Patterns in Discrimination of Sporadic and Outbreak-Related Strains of Yersinia enterocolitica. BMC Microbiology, 2011, 11, 42.	3.3	37
84	Characterization of the Genome, Proteome, and Structure of Yersiniophage ÂR1-37. Journal of Virology, 2012, 86, 12625-12642.	3.4	37
85	A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157:H7 phages as potential biocontrol and phage therapy agents. International Journal of Food Microbiology, 2017, 243, 52-57.	4.7	37
86	Pathogenic Yersinia enterocolitica Strains Increase the Outer Membrane Permeability in Response to Environmental Stimuli by Modulating Lipopolysaccharide Fluidity and Lipid A Structure. Infection and Immunity, 2003, 71, 2014-2021.	2.2	36
87	Realâ€time multiplex PCR assay for detection of <i>Yersinia pestis</i> and <i>Yersinia pseudotuberculosis</i> . Apmis, 2009, 117, 34-44.	2.0	36
88	Stand-Alone EAL Domain Proteins Form a Distinct Subclass of EAL Proteins Involved in Regulation of Cell Motility and Biofilm Formation in Enterobacteria. Journal of Bacteriology, 2017, 199, .	2.2	36
89	Isolation and Characterization of <i>Klebsiella</i> Phages for Phage Therapy. Phage, 2021, 2, 26-42.	1.7	36
90	The Evolutionarily Conserved Ribosomal Protein L23 and the Cationic Urease \hat{I}^2 -Subunit of Yersinia enterocolitica O:3 Belong to the Immunodominant Antigens in Yersinia-Triggered Reactive Arthritis: Implications for Autoimmunity. Molecular Medicine, 1994, 1, 44-55.	4.4	35

#	Article	IF	Citations
91	Isolation of an R- M+ mutant of Yersinia enterocolitica serotype O:8 and its application in construction of rough mutants utilizing mini-Tn5 derivatives and lipopolysaccharide-specific phage. Journal of Bacteriology, 1994, 176, 1756-1760.	2.2	35
92	Functional Recruitment of the Human Complement Inhibitor C4BP to <i>Yersinia pseudotuberculosis</i> Outer Membrane Protein Ail. Journal of Immunology, 2012, 188, 4450-4459.	0.8	35
93	Similarities of Kawasaki Disease and Yersinia pseudotuberculosis Infection Epidemiology. Pediatric Infectious Disease Journal, 2007, 26, 629-631.	2.0	33
94	Apolipoprotein A-I Exerts Bactericidal Activity against Yersinia enterocolitica Serotype O:3*. Journal of Biological Chemistry, 2011, 286, 38211-38219.	3.4	33
95	Absence of YbeY RNase compromises the growth and enhances the virulence plasmid gene expression of Yersinia enterocolitica O:3. Microbiology (United Kingdom), 2015, 161, 285-299.	1.8	33
96	The relationship between phylogenetic classification, virulence and antibiotic resistance of extraintestinal pathogenic <i>Escherichia coli</i> i>in İzmir province, Turkey. PeerJ, 2018, 6, e5470.	2.0	33
97	Bacterial Cell Surface Structures in Yersinia enterocolitica. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 199-209.	2.3	32
98	Isolation, characterization and complete genome sequence of PhaxI: a phage of Escherichia coli O157 : H7. Microbiology (United Kingdom), 2013, 159, 1629-1638.	1.8	32
99	Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. International Journal of Food Microbiology, 2018, 271, 33-47.	4.7	32
100	Cultivation of Borrelia burgdorferi from the Blood and a Subcutaneous Lesion of a Patient with Relapsing Febrile Nodular Nonsuppurative Panniculitis. Journal of Infectious Diseases, 1992, 165, 596-597.	4.0	31
101	Expression of heterologous O-antigen in Yersinia pestis KIM does not affect virulence by the intravenous route. Journal of Medical Microbiology, 2003, 52, 289-294.	1.8	31
102	The Yersinia adhesin YadA binds to a collagenous triple-helical conformation but without sequence specificity. Protein Engineering, Design and Selection, 2008, 21, 475-484.	2.1	31
103	Genomic Characterization of Sixteen Yersinia enterocolitica-Infecting Podoviruses of Pig Origin. Viruses, 2018, 10, 174.	3.3	31
104	Yersinia Phages and Food Safety. Viruses, 2019, 11, 1105.	3.3	31
105	Experimental Intestinal Infection of Rats by Yersinia enterocolitica 0:3: A Follow-up Study with Specific Antibodies to the Virulence Plasmid Specified Antigens. Scandinavian Journal of Infectious Diseases, 1986, 18, 355-364.	1.5	28
106	The <i>Yersinia pseudotuberculosis</i> Outer Membrane Protein Ail Recruits the Human Complement Regulatory Protein Factor H. Journal of Immunology, 2012, 189, 3593-3599.	0.8	28
107	Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses. Food Microbiology, 2017, 65, 36-43.	4.2	28
108	Rapid Method for Isolation and Staining of Bacterial Lipopolysaccharide. Microbiology and Immunology, 1991, 35, 331-333.	1.4	27

#	Article	IF	Citations
109	Identification and Role of a 6â€Deoxyâ€4â€Ketoâ€Hexosamine in the Lipopolysaccharide Outer Core of <i>Yersinia enterocolitica</i> Serotype O:3. Chemistry - A European Journal, 2009, 15, 9747-9754.	3.3	27
110	<i>Yersinia pestis</i> <scp>A</scp> il recruitment of <scp>C</scp> 4bâ€binding protein leads to factor lâ€mediated inactivation of covalently and noncovalently bound <scp>C</scp> 4b. European Journal of Immunology, 2014, 44, 742-751.	2.9	26
111	Identifying components required for OMP biogenesis as novel targets for antiinfective drugs. Virulence, 2017, 8, 1170-1188.	4.4	26
112	Molecular genetics of Yersinia lipopolysaccharide. , 1999, , 23-51.		26
113	Molecular mimicry: Any role in the pathogenesis of spondyloarthropathies?. Immunologic Research, 1993, 12, 193-208.	2.9	24
114	The structure of the carbohydrate backbone of the core-lipid A region of the lipopolysaccharide from a clinical isolate of Yersinia enterocolitica O:9. FEBS Journal, 1999, 261, 19-24.	0.2	24
115	Generation of a <scp>CRISPR</scp> database for <scp><i>Y</i></scp> <i>ersinia pseudotuberculosis</i> complex and role of <scp>CRISPR</scp> â€based immunity in conjugation. Environmental Microbiology, 2015, 17, 4306-4321.	3.8	24
116	Molecular Genetics, Biochemistry and Biological Role of Yersinia Lipopolysaccharide. Advances in Experimental Medicine and Biology, 2004, 529, 187-197.	1.6	23
117	Characterisation of non-pathogenic Yersinia pseudotuberculosis-like strains isolated from food and environmental samples. International Journal of Food Microbiology, 2009, 129, 150-156.	4.7	23
118	Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection. Frontiers in Immunology, 2019, 10, 96.	4.8	23
119	Characterization of the Six Glycosyltransferases Involved in the Biosynthesis of Yersinia enterocolitica Serotype O:3 Lipopolysaccharide Outer Core. Journal of Biological Chemistry, 2010, 285, 28333-28342.	3.4	22
120	Y. enterocolitica and Y. pseudotuberculosis. , 2006, , 270-398.		21
121	Interaction of human mannose-binding lectin (MBL) with Yersinia enterocolitica lipopolysaccharide. International Journal of Medical Microbiology, 2015, 305, 544-552.	3.6	21
122	Inhibition of pathogen adhesion by \hat{I}^2 -lactoglobulin. International Dairy Journal, 1997, 7, 685-692.	3.0	20
123	Expression of the Yersinia enterocolitica pYV-Encoded Type III Secretion System Is Modulated by Lipopolysaccharide O-Antigen Status. Infection and Immunity, 2007, 75, 1512-1516.	2.2	20
124	Nonessential Genes of Phage φYeO3-12 Include Genes Involved in Adaptation to Growth on Yersinia enterocolitica Serotype O:3. Journal of Bacteriology, 2005, 187, 1405-1414.	2.2	19
125	A real-time PCR assay for the specific identification of serotype O:9 of Yersinia enterocolitica. Journal of Microbiological Methods, 2005, 63, 151-156.	1.6	19
126	Characterization and Biological Role of the O-Polysaccharide Gene Cluster of <i>Yersinia enterocolitica </i> Serotype O:9. Journal of Bacteriology, 2007, 189, 7244-7253.	2,2	19

#	Article	IF	CITATIONS
127	Yersinia pseudotuberculosis Exploits CD209 Receptors for Promoting Host Dissemination and Infection. Infection and Immunity, 2019, 87, .	2.2	19
128	Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential. Viruses, 2020, 12, 133.	3.3	19
129	Phage-based target discovery and its exploitation towards novel antibacterial molecules. Current Opinion in Biotechnology, 2021, 68, 1-7.	6.6	19
130	The O-specific polysaccharide structure and gene cluster of serotype O:12 of the Yersinia pseudotuberculosis complex, and the identification of a novel L-quinovose biosynthesis gene. Glycobiology, 2013, 23, 346-353.	2.5	18
131	Primary Amine Oxidase of Escherichia coli Is a Metabolic Enzyme that Can Use a Human Leukocyte Molecule as a Substrate. PLoS ONE, 2015, 10, e0142367.	2.5	18
132	Bacteriophages of Yersinia pestis. Advances in Experimental Medicine and Biology, 2016, 918, 361-375.	1.6	18
133	T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia pseudotuberculosis and Yersinia pestis Using LPS and OmpF as Receptors. Viruses, 2021, 13, 296.	3.3	18
134	Plasmid Associated Antibody Production against Yersinia enterocolitica in Man. Scandinavian Journal of Infectious Diseases, 1983, 15, 173-177.	1.5	17
135	Characterization of the specific O-polysaccharide structure and biosynthetic gene cluster of Yersinia pseudotuberculosis serotype O:15. Innate Immunity, 2009, 15, 351-359.	2.4	17
136	The O-specific polysaccharide structure and biosynthetic gene cluster of Yersinia pseudotuberculosis serotype O:11. Carbohydrate Research, 2009, 344, 1533-1540.	2.3	17
137	ldentification of three oligoâ€∤polysaccharideâ€specific ligases in <i>Yersinia enterocolitica</i> . Molecular Microbiology, 2012, 83, 125-136.	2.5	17
138	Phylogeographic separation and formation of sexually discrete lineages in a global population of Yersinia pseudotuberculosis. Microbial Genomics, 2017, 3, e000133.	2.0	17
139	Enterobacterial common antigen and O-specific polysaccharide coexist in the lipopolysaccharide of Yersinia enterocolitica serotype O : 3. Microbiology (United Kingdom), 2013, 159, 1782-1793.	1.8	16
140	Exploiting bacterial properties for multi-hop nanonetworks. , 2014, 52, 184-191.		16
141	Isolation and characterization of <i>Yersinia-</i> specific bacteriophages from pig stools in Finland. Journal of Applied Microbiology, 2015, 118, 599-608.	3.1	16
142	ECA-immunogenicity of Proteus mirabilis strains. Archivum Immunologiae Et Therapiae Experimentalis, 2009, 57, 147-151.	2.3	15
143	Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii. Viruses, 2020, 12, 604.	3.3	15
144	How to outwit the enemy: dendritic cells face Salmonella Apmis, 2006, 114, 589-600.	2.0	14

#	Article	IF	Citations
145	The genetics and structure of the O-specific polysaccharide of Yersinia pseudotuberculosis serotype O:10 and its relationship with Escherichia coli O111 and Salmonella enterica O35. Glycobiology, 2011, 21, 1131-1139.	2.5	14
146	Analysis of Enterocoliticin, a Phage Tail-like Bacteriocin. , 2003, 529, 249-252.		13
147	Genetic characterisation and structural analysis of the O-specific polysaccharide of <i>Yersinia pseudotuberculosis</i> serotype O:1c. Innate Immunity, 2011, 17, 183-190.	2.4	13
148	Expression of the Yersinia enterocolitica O:3 LPS O-antigen and outer core gene clusters is RfaH-dependent. Microbiology (United Kingdom), 2015, 161, 1282-1294.	1.8	13
149	Salmonella enterica Serovar Typhimurium Interacts with CD209 Receptors To Promote Host Dissemination and Infection. Infection and Immunity, 2019, 87, .	2.2	13
150	A Multiplex PCR-Detection Assay for Yersinia enterocolitica Serotype O:9 and Brucella spp. Based on the Perosamine Synthetase Gene. Advances in Experimental Medicine and Biology, 2004, 529, 451-454.	1.6	12
151	Role of YadA in Yersinia-enterocolitica-induced reactive arthritis: a hypothesis. Trends in Microbiology, 1995, 3, 318-319.	7.7	11
152	Expression, purification and crystallization of a collagen-binding fragment of Yersinia adhesin YadA. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1042-1044.	2.5	11
153	Characterization of anti-ECA antibodies in rabbit antiserum against rough Yersinia enterocolitica O:3. Biochemistry (Moscow), 2011, 76, 832-839.	1.5	11
154	A Toxicity Screening Approach to Identify Bacteriophage-Encoded Anti-Microbial Proteins. Viruses, 2019, 11, 1057.	3.3	11
155	Lipopolysaccharide Core Oligosaccharide Biosynthesis and Assembly. , 2011, , 237-273.		10
156	Serological characterization of the enterobacterial common antigen substitution of the lipopolysaccharide of Yersinia enterocolitica O : 3. Microbiology (United Kingdom), 2015, 161, 219-227.	1.8	10
157	Lectin pathway factors in patients suffering from juvenile idiopathic arthritis. Immunology and Cell Biology, 2017, 95, 666-675.	2.3	10
158	Passive immunization with monoclonal antibodies specific for lipopolysaccharide (LPS) Oâ€side chain protects mice against intravenous <i>Yersinia enterocolitica</i> serotype O:3 infection. Apmis, 1996, 104, 598-602.	2.0	9
159	ECA-Antibodies in Antisera Against R Mutants of Yersinia enterocolitica O:3., 2003, 529, 215-218.		9
160	The structure of the O-specific polysaccharide of the lipopolysaccharide from Yersinia enterocolitica serotype O:50 strain 3229. Carbohydrate Research, 2012, 359, 97-101.	2.3	9
161	Structure and genetic basis of <i>Yersinia similis</i> serotype O:9 O-specific polysaccharide. Innate Immunity, 2015, 21, 3-16.	2.4	9
162	Genomic characterization of four novel Staphylococcus myoviruses. Archives of Virology, 2019, 164, 2171-2173.	2.1	9

#	Article	IF	CITATIONS
163	Complete Genome Sequences of Two Klebsiella pneumoniae Phages Isolated as Part of an International Effort. Microbiology Resource Announcements, 2019, 8, .	0.6	9
164	φYeO3-12 phage tail fiber Gp17 as a promising high specific tool for recognition of Yersinia enterocolitica pathogenic serotype O:3. AMB Express, 2022, 12, 1.	3.0	9
165	Detection of a novel repeated sequence useful for epidemiological typing of pathogenic Yersinia enterocolitica. International Journal of Medical Microbiology, 2002, 292, 215-225.	3.6	8
166	Identification of distinct lipopolysaccharide patterns among Yersinia enterocolitica and Y. enterocolitica-like bacteria. Biochemistry (Moscow), 2011, 76, 823-831.	1.5	8
167	Yersiniophages. Advances in Experimental Medicine and Biology, 2004, 529, 233-240.	1.6	7
168	Yersinia Surface Structures and Bacteriophages. Advances in Experimental Medicine and Biology, 2012, 954, 293-301.	1.6	7
169	Isolation of pathogenic Yersinia enterocolitica strains from different sources in Izmir region, Turkey. Folia Microbiologica, 2015, 60, 523-529.	2.3	7
170	Characterization of vB_ApiM_fHyAci03, a novel lytic bacteriophage that infects clinical Acinetobacter strains. Archives of Virology, 2019, 164, 2197-2199.	2.1	7
171	Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01. Viruses, 2020, 12, 544.	3.3	7
172	YerA41, a Yersinia ruckeri Bacteriophage: Determination of a Non-Sequencable DNA Bacteriophage Genome via RNA-Sequencing. Viruses, 2020, 12, 620.	3.3	7
173	Experimental pig yersiniosis to assess attenuation of Yersinia enterocolitica O:8 mutant strains. FEMS Immunology and Medical Microbiology, 2006, 47, 425-435.	2.7	6
174	Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses. PLoS ONE, 2019, 14, e0219422.	2.5	6
175	Invasiveness of the Yersinia pestis ail protein contributes to host dissemination in pneumonic and oral plague. Microbial Pathogenesis, 2020, 141, 103993.	2.9	6
176	Bacteriophages fEV-1 and fD1 Infect Yersinia pestis. Viruses, 2021, 13, 1384.	3.3	6
177	LuxCDE-luxAB-based promoter reporter system to monitor the Yersinia enterocolitica O:3 gene expression in vivo. PLoS ONE, 2017, 12, e0172877.	2.5	6
178	Dissociation between ornithine decarboxylase activity and aryl hydrocarbon hydroxylase induction in cell cultures treated with benz[a]anthracene and inhibitors of ornithine decarboxylase. Biochemical Pharmacology, 1982, 31, 189-193.	4.4	5
179	Genetic (Sero)Typing of Yersinia pseudotuberculosis. , 2003, 529, 337-340.		5
180	Revision of the O-polysaccharide structure of Yersinia pseudotuberculosis O:1a; confirmation of the function of WbyM as paratosyltransferase. Carbohydrate Research, 2012, 350, 98-102.	2.3	5

#	Article	lF	CITATIONS
181	Forward and reverse coding for bacteria nanonetworks. , 2013, , .		5
182	Complete Genome Sequences of Two Escherichia Phages Isolated from Wastewater in Finland. Genome Announcements, $2018, 6, .$	0.8	5
183	Phage Treatment Trial to Eradicate LA-MRSA from Healthy Carrier Pigs. Viruses, 2021, 13, 1888.	3.3	5
184	Temperature and Growth Phase Regulate the Transcription of the O-Antigen Gene Cluster of Yersinia enterocolitica O:3. Advances in Experimental Medicine and Biology, 2004, 529, 289-292.	1.6	4
185	Structural Studies of Yersinia Adhesin YadA. Advances in Experimental Medicine and Biology, 2004, 529, 85-88.	1.6	4
186	Cloning and Characterization of the Yersinia enterocolitica Serotype O:9 Lipopolysaccharide O-Antigen Gene Cluster., 2003, 529, 207-209.		4
187	Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS. Innate Immunity, 2016, 22, 205-217.	2.4	4
188	Several Hfqâ€dependent alterations in physiology of <i>Yersinia enterocolitica</i> O:3 are mediated by derepression of the transcriptional regulator RovM. Molecular Microbiology, 2017, 103, 1065-1091.	2.5	4
189	The Podovirus ϕ80-18 Targets the Pathogenic American Biotype 1B Strains of Yersinia enterocolitica. Frontiers in Microbiology, 2020, 11, 1356.	3.5	4
190	My Life with Yersinia. Advances in Experimental Medicine and Biology, 2007, 603, 44-73.	1.6	4
191	Yersinia pestis Ail recruitment of C4b-binding protein leads to factor I-mediated inactivation of covalently and noncovalently bound C4b. European Journal of Immunology, 2014, 44, 742-51.	2.9	4
192	Can Bacteriophages Replace Antibiotics?. Antibiotics, 2022, 11, 575.	3.7	4
193	Application of an Enzyme Immunoassay to Monitor Bacterial Binding and to Measure Inhibition of Binding to Different Types of Solid Surfaces. Journal of Immunoassay, 1997, 18, 165-183.	0.3	3
194	Mutations in the genes for synthesis of the outer core region of the lipopolysaccharide of Yersinia enterocolitica O:3. Journal of Applied Microbiology, 2003, 94, 686-692.	3.1	3
195	Transposon Mutagenesis of the Phage φYeO3-12. Advances in Experimental Medicine and Biology, 2004, 529, 245-248.	1.6	3
196	The Role of Yersinia enterocolitica O:3 Lipopolysaccharide in Collagen-Induced Arthritis. Journal of Immunology Research, 2020, 2020, 1-12.	2.2	3
197	Screening of Bacteriophage Encoded Toxic Proteins with a Next Generation Sequencing-Based Assay. Viruses, 2021, 13, 750.	3.3	3
198	Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Archives of Virology, 2022, 167, 1333-1341.	2.1	3

#	Article	IF	CITATIONS
199	Sequencing of Virulence Genes Shows Limited Genetic Variability in Yersinia pseudotuberculosis. Foodborne Pathogens and Disease, 2013, 10, 21-27.	1.8	2
200	Viruses with U-DNA: New Avenues for Biotechnology. Viruses, 2021, 13, 875.	3.3	2
201	BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses, 2021, 13, 2171.	3.3	2
202	Birds Kept in the German Zoo "Tierpark Berlin―Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages. Frontiers in Microbiology, 2021, 12, 634289.	3.5	2
203	The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Research, 2022, , .	14.5	2
204	Effect of waaL ligase gene deletion on motility and stress adaptation reactions of Y. enterocolitica 6471/76. Cytology and Genetics, 2015, 49, 358-363.	0.5	1
205	Construction and Screening of a Transposon Insertion Library of Yersinia enterocolitica (YeO3-R1). Bio-protocol, 2012, 2, .	0.4	1
206	Phage Therapy. , 0, , 371-389.		1
207	Editorial of Viruses Special Issue on Phage–Host Interactions 2021. Viruses, 2022, 14, 236.	3.3	1
208	Characterization of the Lipopolysaccharide Outer Core Biosynthesis of Yersinia enterocolitica Serotype O:3., 2003, 529, 211-213.		0
209	Diagnostic clinical bacteriology - recent developments in the application of molecular biology tools. Apmis, 2004, 112, 709-712.	2.0	0
210	PgtE Enzyme of Salmonella enterica Shares the Similar Biological Roles to Plasminogen Activator (Pla) in Interacting With DEC-205 (CD205), and Enhancing Host Dissemination and Infectivity by Yersinia pestis. Frontiers in Immunology, 2022, 13, 791799.	4.8	0