Christoph A Merten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms. Chemistry and Biology, 2008, 15, 427-437.	6.0	620
2	Drop-based microfluidic devices for encapsulation of single cells. Lab on A Chip, 2008, 8, 1110.	6.0	470
3	Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab on A Chip, 2016, 16, 1314-1331.	6.0	295
4	Functional single-cell hybridoma screening using droplet-based microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11570-11575.	7.1	236
5	A microfluidics platform for combinatorial drug screening on cancer biopsies. Nature Communications, 2018, 9, 2434.	12.8	177
6	Imaging of mRNA in Live Cells Using Nucleic Acid-Templated Reduction of Azidorhodamine Probes. Journal of the American Chemical Society, 2009, 131, 6492-6497.	13.7	156
7	Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation. Cell, 2018, 172, 1079-1090.e12.	28.9	155
8	Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells. Cell Reports, 2018, 22, 2206-2215.	6.4	149
9	Miniaturization and Parallelization of Biological andÂChemical Assays in Microfluidic Devices. Chemistry and Biology, 2010, 17, 1052-1065.	6.0	126
10	An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab on A Chip, 2010, 10, 1302.	6.0	99
11	High-Throughput Screening of Enzymes by Retroviral Display Using Droplet-Based Microfluidics. Chemistry and Biology, 2010, 17, 229-235.	6.0	84
12	Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts. Developmental Cell, 2015, 33, 562-575.	7.0	72
13	Microfluidic single-cell technology in immunology and antibody screening. Molecular Aspects of Medicine, 2018, 59, 47-61.	6.4	66
14	Circumventing Tolerance to the Prion Protein (PrP): Vaccination with PrP-Displaying Retrovirus Particles Induces Humoral Immune Responses against the Native Form of Cellular PrP. Journal of Virology, 2005, 79, 4033-4042.	3.4	62
15	Microfluidics as an Enabling Technology for Personalized Cancer Therapy. Small, 2020, 16, e1904321.	10.0	55
16	Microfluidics as an Emerging Precision Tool in Developmental Biology. Developmental Cell, 2019, 48, 293-311.	7.0	51
17	Microfluidic devices for diagnostic applications. Expert Review of Molecular Diagnostics, 2011, 11, 505-519.	3.1	49
18	Efficient cell pairing in droplets using dual-color sorting. Lab on A Chip, 2015, 15, 3989-3993.	6.0	44

2

CHRISTOPH A MERTEN

#	Article	IF	CITATIONS
19	Single-Virus Droplet Microfluidics for High-Throughput Screening of Neutralizing Epitopes on HIV Particles. Cell Chemical Biology, 2017, 24, 751-757.e3.	5.2	33
20	Fragmentation of DNA in a sub-microliter microfluidic sonication device. Lab on A Chip, 2012, 12, 4677.	6.0	30
21	Microfluidic train station: highly robust and multiplexable sorting of droplets on electric rails. Lab on A Chip, 2017, 17, 1024-1030.	6.0	29
22	A Versatile, Low-Cost, Multiway Microfluidic Sorter for Droplets, Cells, and Embryos. Analytical Chemistry, 2018, 90, 5982-5988.	6.5	27
23	Directed Evolution of Retrovirus Envelope Protein Cytoplasmic Tails Guided by Functional Incorporation into Lentivirus Particles. Journal of Virology, 2005, 79, 834-840.	3.4	22
24	Retroviral Display in Gene Therapy, Protein Engineering, and Vaccine Development. ACS Chemical Biology, 2011, 6, 61-74.	3.4	15
25	Enrichment of gut microbiome strains for cultivation-free genome sequencing using droplet microfluidics. Cell Reports Methods, 2022, 2, 100137.	2.9	14
26	Nanoliter plates—versatile tools for the screening of split-and-mix libraries on-bead and off-bead. Chemical Communications, 2010, 46, 2209.	4.1	13
27	Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics. PLoS ONE, 2015, 10, e0140553.	2.5	8
28	Displaying Epidermal Growth Factor on Spleen Necrosis Virus-Derived Targeting Vectors. Virology, 2003, 305, 106-114.	2.4	5
29	Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein. Nucleic Acids Research, 2006, 34, e41-e41.	14.5	5
30	A competition-based assay for the screening of species-specific antibiotics. Journal of Antimicrobial Chemotherapy, 2009, 64, 62-68.	3.0	5
31	Screening Europe 2010: an update about the latest technologies and applications in high-throughput screening. Expert Review of Molecular Diagnostics, 2010, 10, 559-563.	3.1	5
32	Technological and computational advances driving high-throughput oncology. Trends in Cell Biology, 2022, 32, 947-961.	7.9	5
33	A Competitive Co-cultivation Assay for Cancer Drug Specificity Evaluation. Journal of Biomolecular Screening, 2011, 16, 818-824.	2.6	4
34	Coupling the Inhibition of Viral Transduction with a Positive Fluorescence Signal. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 352-357.	1.1	2
35	Soft compartmentalization: Combining dropletâ€based microfluidics with freely accessible cells. Engineering in Life Sciences, 2015, 15, 297-305.	3.6	1
36	Micro segmented-flow in biochemical and cell-based assays. Frontiers in Bioscience - Elite, 2012, E4, 1768.	1.8	0