List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chemical Engineering Journal, 2022, 427, 130987.	6.6	34
2	Nanomedicine-Leveraged Intratumoral Coordination and Redox Reactions of Dopamine for Tumor-Specific Chemotherapy. CCS Chemistry, 2022, 4, 1499-1509.	4.6	16
3	Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy. Bioactive Materials, 2022, 10, 131-144.	8.6	23
4	Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2022, 66, 52-60.	7.1	37
5	Co-electrolysis toward value-added chemicals. Science China Materials, 2022, 65, 1-9.	3.5	32
6	Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug delivery and enhanced therapy efficiency. Materials Today Chemistry, 2022, 23, 100660.	1.7	8
7	An electrochemically reconstructed WC/WO ₂ –WO ₃ heterostructure as a highly efficient hydrogen oxidation electrocatalyst. Journal of Materials Chemistry A, 2022, 10, 622-631.	5.2	15
8	Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano Today, 2022, 42, 101377.	6.2	46
9	Nickel-Tungsten Nano-Alloying for High-Performance hydrogen Electro-Catalytic oxidation. Chemical Engineering Journal, 2022, 432, 134189.	6.6	17
10	Pt NPs-loaded siloxene nanosheets for hydrogen co-evolutions from Zn-H2O fuel cells-powered water-splitting. Applied Catalysis B: Environmental, 2022, 304, 121008.	10.8	27
11	Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation. Chem Catalysis, 2022, 2, 358-371.	2.9	11
12	Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. Journal of Nanobiotechnology, 2022, 20, 4.	4.2	49
13	Nâ€Đoped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
14	5 Maternal gestational nutrition perturbs small RNA code in offspring sperm in sheep. Reproduction, Fertility and Development, 2022, 34, 236.	0.1	0
15	Interfacial-confined coordination to single-atom nanotherapeutics. Nature Communications, 2022, 13, 91.	5.8	49
16	Nâ€Đoped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites?. Angewandte Chemie, 2022, 134, .	1.6	7
17	Mild hyperthermia-mediated osteogenesis and angiogenesis play a critical role in magnetothermal composite-induced bone regeneration. Nano Today, 2022, 43, 101401.	6.2	35
18	Enhancing Tumor Catalytic Therapy by Coâ€Catalysis. Angewandte Chemie, 2022, 134, .	1.6	11

#	Article	IF	CITATIONS
19	Emerging Newâ€Generation Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	2.6	17
20	Enhancing Tumor Catalytic Therapy by Co atalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
21	Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. National Science Review, 2022, 9, .	4.6	19
22	Selfâ€Coâ€Electrolysis for Coâ€Production of Phosphate and Hydrogen in Neutral Phosphate Buffer Electrolyte. Advanced Materials, 2022, 34, e2200058.	11.1	17
23	Biomimetic Nanomedicine-Triggered <i>in Situ</i> Vaccination for Innate and Adaptive Immunity Activations for Bacterial Osteomyelitis Treatment. ACS Nano, 2022, 16, 5943-5960.	7.3	38
24	Low Colorectal Tumor Removal by E-Cadherin Destruction-Enabled Tumor Cell Dissociation. Nano Letters, 2022, 22, 2769-2779.	4.5	9
25	Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2022, 308, 121229.	10.8	69
26	In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. Journal of the American Chemical Society, 2022, 144, 314-330.	6.6	46
27	A Ni/Ni2P heterostructure in modified porous carbon separator for boosting polysulfide catalytic conversion. Science China Materials, 2022, 65, 2453-2462.	3.5	10
28	Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nature Communications, 2022, 13, 1988.	5.8	59
29	Dual Inhibitions on Glucose/Glutamine Metabolisms for Nontoxic Pancreatic Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 21836-21847.	4.0	14
30	Acid Neutralization and Immune Regulation by Calcium–Aluminum-Layered Double Hydroxide for Osteoporosis Reversion. Journal of the American Chemical Society, 2022, 144, 8987-8999.	6.6	30
31	Ultrauniformly Dispersed Cu Nanoparticles Embedded in N-Doped Carbon as a Robust Oxygen Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 6370-6381.	3.2	15
32	Computation-Aided Discovery and Synthesis of 2D PrOBr Photocatalyst. ACS Energy Letters, 2022, 7, 1980-1986.	8.8	7
33	Probiotic Engineering and Targeted Sonoimmunoâ€Therapy Augmented by STING Agonist. Advanced Science, 2022, 9, .	5.6	16
34	Fe ²⁺ /Fe ³⁺ Cycling for Coupling Selfâ€Powered Hydrogen Evolution and Preparation of Electrode Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
35	Modulation of mitochondrial electron transport chain by pyroptosis nanoagonists for photoresponsive tumor destruction. Nano Today, 2022, 44, 101511.	6.2	14
36	Nonâ€PCR Ultrasensitive Detection of Viral RNA by a Nanoprobeâ€Coupling Strategy: SARSâ€CoVâ€⊋ as an Example. Advanced Healthcare Materials, 2022, 11, .	3.9	4

#	Article	IF	CITATIONS
37	Fe ²⁺ /Fe ³⁺ Cycling for Coupling Selfâ€Powered Hydrogen Evolution and Preparation of Electrode Catalysts. Angewandte Chemie, 2022, 134, .	1.6	4
38	Water-Enabled H ₂ Generation from Hydrogenated Silicon Nanosheets for Efficient Anti-Inflammation. Journal of the American Chemical Society, 2022, 144, 14195-14206.	6.6	18
39	Formic Acid Electroâ€Synthesis by Concurrent Cathodic CO ₂ Reduction and Anodic CH ₃ OH Oxidation. Angewandte Chemie - International Edition, 2021, 60, 3148-3155.	7.2	181
40	Formic Acid Electro‧ynthesis by Concurrent Cathodic CO 2 Reduction and Anodic CH 3 OH Oxidation. Angewandte Chemie, 2021, 133, 3185-3192.	1.6	19
41	Electrocatalytic Hydrogen Production Trilogy. Angewandte Chemie, 2021, 133, 19702-19723.	1.6	114
42	SnO2/CeO2 nanoparticle-decorated mesoporous ZSM-5 as bifunctional electrocatalyst for HOR and ORR. Chemical Engineering Journal, 2021, 417, 127913.	6.6	21
43	Ru to W electron donation for boosted HER from acidic to alkaline on Ru/WNO sponges. Nano Energy, 2021, 80, 105531.	8.2	85
44	Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine. Advanced Functional Materials, 2021, 31, 2005093.	7.8	40
45	Electrocatalytic Hydrogen Production Trilogy. Angewandte Chemie - International Edition, 2021, 60, 19550-19571.	7.2	220
46	Dual synergetic catalytic effects boost hydrogen electric oxidation performance of Pd/W18O49. Nano Research, 2021, 14, 2441-2450.	5.8	15
47	Tumor chemical suffocation therapy by dual respiratory inhibitions. Chemical Science, 2021, 12, 7763-7769.	3.7	14
48	Nanocatalytic Medicine of Iron-Based Nanocatalysts. CCS Chemistry, 2021, 3, 2445-2463.	4.6	22
49	Upconversion Nanoparticles Hybridized Cyanobacterial Cells for Nearâ€Infrared Mediated Photosynthesis and Enhanced Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2010196.	7.8	45
50	NiMo Nanoparticles Anchored on N-Doped Carbon Rods for High-Efficiency Hydrogen Electrooxidation in Alkaline Media. ACS Applied Materials & Interfaces, 2021, 13, 15475-15481.	4.0	14
51	Dual Size/Charge witchable Nanocatalytic Medicine for Deep Tumor Therapy. Advanced Science, 2021, 8, 2002816.	5.6	48
52	Transitional Metalâ€Based Noncatalytic Medicine for Tumor Therapy. Advanced Healthcare Materials, 2021, 10, e2001819.	3.9	28
53	Nanocatalytic Innate Immunity Activation by Mitochondrial DNA Oxidative Damage for Tumorâ€5pecific Therapy. Advanced Materials, 2021, 33, e2008065.	11.1	78
54	Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. Journal of the American Chemical Society, 2021, 143, 8116-8128.	6.6	87

#	Article	IF	CITATIONS
55	Multi-enzymatic activities of ultrasmall ruthenium oxide for anti-inflammation and neuroprotection. Chemical Engineering Journal, 2021, 411, 128543.	6.6	32
56	Engineering single MnN4 atomic active sites on polydopamine-modified helical carbon tubes towards efficient oxygen reduction. Energy Storage Materials, 2021, 37, 274-282.	9.5	47
57	Cooperative organizations of small molecular surfactants and amphiphilic block copolymers: Roles of surfactants in the formation of binary coâ€assemblies. Aggregate, 2021, 2, e49.	5.2	10
58	Defect Engineering of Photocatalysts towards Elevated CO ₂ Reduction Performance. ChemSusChem, 2021, 14, 2635-2654.	3.6	19
59	Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nature Communications, 2021, 12, 3393.	5.8	57
60	Starvation-Sensitized and Oxygenation-Promoted Tumor Sonodynamic Therapy by a Cascade Enzymatic Approach. Research, 2021, 2021, 9769867.	2.8	11
61	Defect Engineering of Mesoporous Silica Nanoparticles for Biomedical Applications. Accounts of Materials Research, 2021, 2, 581-593.	5.9	20
62	CoNiFe-LDHs decorated Ta3N5 nanotube array photoanode for remarkably enhanced photoelectrochemical glycerol conversion coupled with hydrogen generation. Nano Energy, 2021, 89, 106326.	8.2	34
63	Metal–Nitrogen–Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. Advanced Materials, 2021, 33, e2100997.	11.1	60
64	Confined structure regulations of molybdenum oxides for efficient tumor photothermal therapy. Science China Materials, 2021, 64, 3087-3100.	3.5	7
65	Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Materials Today Nano, 2021, 15, 100119.	2.3	29
66	MnO ₂ Electrocatalysts Coordinating Alcohol Oxidation for Ultraâ€Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie, 2021, 133, 21634-21642.	1.6	14
67	MnO ₂ Electrocatalysts Coordinating Alcohol Oxidation for Ultraâ€Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie - International Edition, 2021, 60, 21464-21472.	7.2	93
68	Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. Nano Letters, 2021, 21, 6764-6772.	4.5	75
69	FeP modified polymeric carbon nitride as a noble-metal-free photocatalyst for efficient CO2 reduction. Catalysis Communications, 2021, 156, 106326.	1.6	13
70	A nonferrous ferroptosis-like strategy for antioxidant inhibition–synergized nanocatalytic tumor therapeutics. Science Advances, 2021, 7, eabj8833.	4.7	147
71	Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catalysis, 2021, 1, 941-955.	2.9	73
72	Reductantâ€Free Synthesis of MnO ₂ Nanosheetâ€Decorated Hybrid Nanoplatform for Magnetic Resonance Imagingâ€Monitored Tumor Microenvironmentâ€Responsive Chemodynamic Therapy and Nearâ€Infraredâ€Mediated Photodynamic Therapy. Small Structures, 2021, 2, 2100116.	6.9	20

#	Article	IF	CITATIONS
73	Photosynthetic Cyanobacteriaâ€Hybridized Black Phosphorus Nanosheets for Enhanced Tumor Photodynamic Therapy. Small, 2021, 17, e2102113.	5.2	46
74	Hydrogen Evolution/Oxidation Electrocatalysts by the Self-Activation of Amorphous Platinum. ACS Applied Materials & amp; Interfaces, 2021, 13, 44224-44233.	4.0	12
75	Emerging electrocatalysts for PEMFCs applications: Tungsten oxide as an example. Chemical Engineering Journal, 2021, 421, 129430.	6.6	18
76	Emerging two-dimensional silicene nanosheets for biomedical applications. Materials Today Nano, 2021, 16, 100132.	2.3	19
77	A Ti-OH bond breaking route for creating oxygen vacancy in titania towards efficient CO2 photoreduction. Chemical Engineering Journal, 2021, 425, 131513.	6.6	23
78	Magnetoâ€Based Synergetic Therapy for Implantâ€Associated Infections via Biofilm Disruption and Innate Immunity Regulation. Advanced Science, 2021, 8, 2004010.	5.6	61
79	Singleâ€Atom Catalysts for Nanocatalytic Tumor Therapy. Small, 2021, 17, e2004467.	5.2	72
80	Niobium Carbide MXene Augmented Medical Implant Elicits Bacterial Infection Elimination and Tissue Regeneration. ACS Nano, 2021, 15, 1086-1099.	7.3	135
81	Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today, 2021, 51, 165-187.	8.3	87
82	Endogenous Copper for Nanocatalytic Oxidative Damage and Self-Protection Pathway Breakage of Cancer. ACS Nano, 2021, 15, 16286-16297.	7.3	35
83	Hydrogen-bonded silicene nanosheets of engineered bandgap and selective degradability for photodynamic therapy. Biomaterials, 2021, 278, 121172.	5.7	21
84	Superstable and Large-Scalable Organosilica-Micellar Hybrid Nanosystem <i>via</i> a Confined Gelation Strategy for Ultrahigh-Dosage Chemotherapy. Nano Letters, 2021, 21, 9388-9397.	4.5	12
85	Electronic Structure Regulations of Polymeric Carbon Nitride via Molecular Engineering for Enhanced Photocatalytic Activity. Solar Rrl, 2021, 5, 2100569.	3.1	1
86	GSH/pH dual-responsive supramolecular hybrid vesicles for synergistic enzymatic/chemo-tumor therapy. Applied Materials Today, 2020, 18, 100458.	2.3	8
87	Photosynthetic Tumor Oxygenation by Photosensitizerâ€Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 1922-1929.	1.6	20
88	Photosynthetic Tumor Oxygenation by Photosensitizerâ€Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 1906-1913.	7.2	131
89	Oneâ€Pot Synthesized Nickelâ€Doped Hierarchically Porous Beta Zeolite for Enhanced Methanol Electrocatalytic Oxidation Activity. ChemCatChem, 2020, 12, 6285-6290.	1.8	6
90	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	23.3	228

#	Article	IF	CITATIONS
91	Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.	6.2	138
92	Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Advanced Science, 2020, 7, 2001388.	5.6	20
93	Bioinspired Copper Singleâ€Atom Catalysts for Tumor Parallel Catalytic Therapy. Advanced Materials, 2020, 32, e2002246.	11.1	230
94	In Situ Electrochemical Mn(III)/Mn(IV) Generation of Mn(II)O Electrocatalysts for High-Performance Oxygen Reduction. Nano-Micro Letters, 2020, 12, 161.	14.4	64
95	Highly Efficient and Selective CO ₂ Electroâ€Reduction to HCOOH on Sn Particleâ€Decorated Polymeric Carbon Nitride. ChemSusChem, 2020, 13, 6442-6448.	3.6	30
96	Probing the effect of P-doping in polymeric carbon nitride on CO ₂ photocatalytic reduction. Dalton Transactions, 2020, 49, 15750-15757.	1.6	17
97	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	18.7	109
98	Size effects of platinum particles@CNT on HER and ORR performance. Science China Materials, 2020, 63, 2517-2529.	3.5	52
99	Modulation strategies of Cu-based electrocatalysts for efficient nitrogen reduction. Journal of Materials Chemistry A, 2020, 8, 20286-20293.	5.2	35
100	Ascorbate Tumor Chemotherapy by An Iron-Engineered Nanomedicine-Catalyzed Tumor-Specific Pro-Oxidation. Journal of the American Chemical Society, 2020, 142, 21775-21785.	6.6	80
101	Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chemical Engineering Journal, 2020, 396, 125347.	6.6	138
102	Mild generation of surface oxygen vacancies on CeO ₂ for improved CO ₂ photoreduction activity. Nanoscale, 2020, 12, 12374-12382.	2.8	37
103	Efficient Gene Therapy of Pancreatic Cancer via a Peptide Nucleic Acid (PNA)‣oaded Layered Double Hydroxides (LDH) Nanoplatform. Small, 2020, 16, e1907233.	5.2	34
104	Oxygen Pathology and Oxygen-Functional Materials for Therapeutics. Matter, 2020, 2, 1115-1147.	5.0	8
105	Piezocatalytic Tumor Therapy by Ultrasoundâ€Triggered and BaTiO ₃ â€Mediated Piezoelectricity. Advanced Materials, 2020, 32, e2001976.	11.1	320
106	Tumor‧pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie - International Edition, 2020, 59, 9693-9701.	7.2	85
107	Copperâ€Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Advanced Materials, 2020, 32, e2000542.	11.1	112
108	Tumor‧pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie, 2020, 132, 9780-9788.	1.6	13

#	Article	IF	CITATIONS
109	Tumor Cell Dissociation Removes Malignant Bladder Tumors. CheM, 2020, 6, 2283-2299.	5.8	33
110	Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today, 2020, 32, 100854.	6.2	35
111	A Metalâ€Organic Framework (MOF) Fenton Nanoagentâ€Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Advanced Materials, 2020, 32, e1907152.	11.1	220
112	Augmenting Tumor‣tarvation Therapy by Cancer Cell Autophagy Inhibition. Advanced Science, 2020, 7, 1902847.	5.6	76
113	Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 6894-6898.	1.6	49
114	Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 6827-6831.	7.2	142
115	Combined Magnetic Hyperthermia and Immune Therapy for Primary and Metastatic Tumor Treatments. ACS Nano, 2020, 14, 1033-1044.	7.3	161
116	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie, 2020, 132, 22013-22022.	1.6	0
117	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie - International Edition, 2020, 59, 21829-21838.	7.2	38
118	Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish. Journal of the American Chemical Society, 2020, 142, 7858-7867.	6.6	41
119	Structure Engineering of a Lanthanideâ€Based Metal–Organic Framework for the Regulation of Dynamic Ranges and Sensitivities for Pheochromocytoma Diagnosis. Advanced Materials, 2020, 32, e2000791.	11.1	33
120	Rational design of high nitrogen-doped and core–shell/mesoporous carbon nanospheres with high rate capability and cycling longevity for pseudocapacitive sodium storage. Journal of Materials Chemistry A, 2020, 8, 9768-9775.	5.2	28
121	A highly sensitive and selective nanosensor for near-infrared potassium imaging. Science Advances, 2020, 6, eaax9757.	4.7	56
122	Recurrent Extra-gastrointestinal Stromal Tumor of the Vagina: A Case Report and Review of the Literature. Nigerian Journal of Clinical Practice, 2020, 23, 1776.	0.2	2
123	Nanocatalystsâ€Augmented and Photothermalâ€Enhanced Tumorâ€Specific Sequential Nanocatalytic Therapy in Both NIRâ€I and NIRâ€II Biowindows. Advanced Materials, 2019, 31, e1805919.	11.1	347
124	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
125	Silicene: Wetâ€Chemical Exfoliation Synthesis and Biodegradable Tumor Nanomedicine. Advanced Materials, 2019, 31, e1903013.	11.1	112
126	Enhanced Tumor-Specific Disulfiram Chemotherapy by <i>In Situ</i> Cu ²⁺ Chelation-Initiated Nontoxicity-to-Toxicity Transition. Journal of the American Chemical Society, 2019, 141, 11531-11539.	6.6	237

#		Article	IF	CITATIONS
12	27	Cryogenic Exfoliation of Nonâ€layered Magnesium into Twoâ€Dimensional Crystals. Angewandte Chemie, 2019, 131, 8906-8910.	1.6	2
12	28	Gradient Redox-Responsive and Two-Stage Rocket-Mimetic Drug Delivery System for Improved Tumor Accumulation and Safe Chemotherapy. Nano Letters, 2019, 19, 8690-8700.	4.5	60
12	29	Carbon-vacancy modified graphitic carbon nitride: enhanced CO ₂ photocatalytic reduction performance and mechanism probing. Journal of Materials Chemistry A, 2019, 7, 1556-1563.	5.2	178
13	30	Oneâ€Step Synthesis of W ₂ C@N,P Nanocatalysts for Efficient Hydrogen Electrooxidation across the Whole pH Range. Advanced Functional Materials, 2019, 29, 1902505.	7.8	42
18	31	Construction of Singleâ€Ironâ€Atom Nanocatalysts for Highly Efficient Catalytic Antibiotics. Small, 2019, 15, e1901834.	5.2	132
13	32	Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy. Journal of Materials Chemistry B, 2019, 7, 3599-3609.	2.9	58
18	33	Cryogenic Exfoliation of Nonâ€layered Magnesium into Twoâ€Dimensional Crystals. Angewandte Chemie - International Edition, 2019, 58, 8814-8818.	7.2	18
13	34	The ORR kinetics of ZIF-derived Fe N C electrocatalysts. Journal of Catalysis, 2019, 372, 174-181.	3.1	54
18	35	Oxygen Vacancy Generation and Stabilization in CeO _{2–<i>x</i>} by Cu Introduction with Improved CO ₂ Photocatalytic Reduction Activity. ACS Catalysis, 2019, 9, 4573-4581.	5.5	364
13	36	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
18	37	A large-surface-area TS-1 nanocatalyst: a combination of nanoscale particle sizes and hierarchical micro/mesoporous structures. RSC Advances, 2019, 9, 9694-9699.	1.7	16
13	38	Exosome Biochemistry and Advanced Nanotechnology for Nextâ€Generation Theranostic Platforms. Advanced Materials, 2019, 31, e1802896.	11.1	234
13	39	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	14.8	119
14	40	Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano, 2019, 13, 2643-2653.	7.3	234
14	41	Inorganic Nanoshell-Stabilized Liquid Metal for Targeted Photonanomedicine in NIR-II Biowindow. Nano Letters, 2019, 19, 2128-2137.	4.5	127
14	42	Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO ₃ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 6285-6293.	5.2	139
14	43	Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nature Communications, 2019, 10, 5335.	5.8	339
14	44	Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 662-670.	3.5	74

#	Article	IF	CITATIONS
145	Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme atalyzed Cascade Reaction. Advanced Science, 2019, 6, 1801733.	5.6	454
146	Fe ₃ O ₄ -Embedded and N-Doped Hierarchically Porous Carbon Nanospheres as High-Performance Lithium Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 3424-3433.	3.2	71
147	Using Natural Language Processing to improve EHR Structured Data-based Surgical Site Infection Surveillance. AMIA Annual Symposium proceedings, 2019, 2019, 794-803.	0.2	3
148	"Stepwise Extraction―strategy-based injectable bioresponsive composite implant for cancer theranostics. Biomaterials, 2018, 166, 38-51.	5.7	26
149	Engineering Singleâ€Atom Cobalt Catalysts toward Improved Electrocatalysis. Small, 2018, 14, e1704319.	5.2	97
150	A facile strategy to construct CoOx in situ embedded nanoflowers as an efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 275, 218-224.	2.6	13
151	Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation. ACS Nano, 2018, 12, 3780-3795.	7.3	437
152	Engineering crystalline CoOOH anchored on an N-doped carbon support as a durable electrocatalyst for the oxygen reduction reaction. Dalton Transactions, 2018, 47, 6069-6074.	1.6	13
153	Chemical Design of Nuclearâ€Targeting Mesoporous Silica Nanoparticles for Intraâ€nuclear Drug Delivery. Chinese Journal of Chemistry, 2018, 36, 481-486.	2.6	9
154	Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature. Applied Physics Letters, 2018, 112, .	1.5	34
155	Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials, 2018, 161, 292-305.	5.7	127
156	Anion-Containing Noble-Metal-Free Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2018, 8, 3688-3707.	5.5	245
157	C-QDs@UiO-66-(COOH) ₂ Composite Film via Electrophoretic Deposition for Temperature Sensing. Inorganic Chemistry, 2018, 57, 2447-2454.	1.9	69
158	Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 6014-6023.	4.0	81
159	Nanoparticle-triggered <i>in situ</i> catalytic chemical reactions for tumour-specific therapy. Chemical Society Reviews, 2018, 47, 1938-1958.	18.7	616
160	Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163, 1-13.	5.7	144
161	Tumor Microenvironmentâ€Enabled Nanotherapy. Advanced Healthcare Materials, 2018, 7, e1701156.	3.9	158
162	2Dâ€Blackâ€Phosphorusâ€Reinforced 3Dâ€Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Advanced Materials, 2018, 30, 1705611.	11.1	284

#	Article	IF	CITATIONS
163	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132
164	Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 2018, 30, 1703284.	11.1	422
165	PEO-Linked MoS ₂ –Graphene Nanocomposites with 2D Polar–Nonpolar Amphoteric Surfaces as Sulfur Hosts for High-Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 974-982.	3.2	37
166	Tuning the Performance of Single-Atom Electrocatalysts: Support-Induced Structural Reconstruction. Chemistry of Materials, 2018, 30, 7494-7502.	3.2	24
167	CuO/Co(OH) ₂ Nanosheets: A Novel Kind of Electrocatalyst for Highly Efficient Electrochemical Oxidation of Methanol. ACS Applied Materials & Interfaces, 2018, 10, 39002-39008.	4.0	62
168	Synthesis of a Pillar[5]arene-Based Polyrotaxane for Enhancing the Drug Loading Capacity of PCL-Based Supramolecular Amphiphile as an Excellent Drug Delivery Platform. Biomacromolecules, 2018, 19, 2923-2930.	2.6	33
169	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	4.0	76
170	Exogenous/Endogenousâ€Triggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	3.9	48
171	Fe–Au Nanoparticleâ€Coupling for Ultrasensitive Detections of Circulating Tumor DNA. Advanced Materials, 2018, 30, e1801690.	11.1	49
172	Simultaneous Blood–Brain Barrier Crossing and Protection for Stroke Treatment Based on Edaravone-Loaded Ceria Nanoparticles. ACS Nano, 2018, 12, 6794-6805.	7.3	251
173	Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chemical Society Reviews, 2018, 47, 6930-6946.	18.7	191
174	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	5.6	397
175	Metal–Organic Framework Nanosheet Electrocatalysts for Efficient H ₂ Production from Methanol Solution: Methanol-Assisted Water Splitting or Methanol Reforming?. ACS Applied Materials & Interfaces, 2018, 10, 25422-25428.	4.0	112
176	Dual Intratumoral Redox/Enzymeâ€Responsive NOâ€Releasing Nanomedicine for the Specific, Highâ€Efficacy, and Lowâ€Toxic Cancer Therapy. Advanced Materials, 2018, 30, e1704490.	11.1	155
177	A photo-excited electron transfer hyperchannel constructed in Pt-dispersed pyrimidine-modified carbon nitride for remarkably enhanced water-splitting photocatalytic activity. Applied Catalysis B: Environmental, 2018, 237, 888-894.	10.8	36
178	Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). Journal of Materials Chemistry A, 2018, 6, 13538-13548.	5.2	98
179	Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nature Nanotechnology, 2017, 12, 378-386.	15.6	345
180	Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers. Journal of Hazardous Materials, 2017, 328, 160-169.	6.5	84

#	Article	IF	CITATIONS
181	Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets. Journal of Colloid and Interface Science, 2017, 495, 19-26.	5.0	37
182	Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.	5.7	178
183	Hydrophilicity/hydrophobicity modulated synthesis of nano-crystalline and hierarchically structured TS-1 zeolites. CrystEngComm, 2017, 19, 1370-1376.	1.3	25
184	Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 2017, 117, 6160-6224.	23.0	682
185	Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials, 2017, 133, 219-228.	5.7	114
186	Successful chimeric Ag receptor modified T cell therapy for isolated testicular relapse after hematopoietic cell transplantation in an acute lymphoblastic leukemia patient. Bone Marrow Transplantation, 2017, 52, 1065-1067.	1.3	7
187	Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 15952-15961.	4.0	126
188	CeO 2-x platelet from monometallic cerium layered double hydroxides and its photocatalytic reduction of CO 2. Applied Catalysis B: Environmental, 2017, 210, 141-148.	10.8	78
189	Oxygen Vacancy Enables Markedly Enhanced Magnetic Resonance Imaging-Guided Photothermal Therapy of a Gd ³⁺ -Doped Contrast Agent. ACS Nano, 2017, 11, 4256-4264.	7.3	94
190	Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. Journal of the American Chemical Society, 2017, 139, 1275-1284.	6.6	535
191	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Letters, 2017, 17, 384-391.	4.5	953
192	A Redoxâ€anchoring Approach to Wellâ€dispersed MoC _x /C Nanocomposite for Efficient Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 446-452.	1.7	18
193	Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chemical Society Reviews, 2017, 46, 7438-7468.	18.7	358
194	Facile synthesis of Cu doped cobalt hydroxide (Cu–Co(OH) ₂) nano-sheets for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 22568-22575.	5.2	108
195	Antiferromagnetic Pyrite as the Tumor Microenvironmentâ€Mediated Nanoplatform for Selfâ€Enhanced Tumor Imaging and Therapy. Advanced Materials, 2017, 29, 1701683.	11.1	458
196	Capillary Effect-Enabled Water Electrolysis for Enhanced Electrochemical Ozone Production by Using Bulk Porous Electrode. Journal of the American Chemical Society, 2017, 139, 16620-16629.	6.6	47
197	Probing the role of O-containing groups in CO ₂ adsorption of N-doped porous activated carbon. Nanoscale, 2017, 9, 17593-17600.	2.8	44
198	A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Journal of the American Chemical Society, 2017, 139, 16235-16247.	6.6	1,026

#	Article	IF	CITATIONS
199	Identification of hit compounds for squalene synthase: Threeâ€dimensional quantitative structureâ€activity relationship pharmacophore modeling, virtual screening, molecular docking, binding free energy calculation, and molecular dynamic simulation. Journal of Chemometrics, 2017, 31, e2923.	0.7	5
200	Fabrication of a mesoporous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^iî} perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Transactions, 2017, 46, 13903-13911.	1.6	18
201	Coordinationâ€Accelerated "Iron Extraction―Enables Fast Biodegradation of Mesoporous Silicaâ€Based Hollow Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700720.	3.9	27
202	Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8, 357.	5.8	1,074
203	Single-Atom Co-Doped MoS2 Monolayers for Highly Active Biomass Hydrodeoxygenation. CheM, 2017, 2, 468-469.	5.8	22
204	Endogenous Catalytic Generation of O ₂ Bubbles for <i>In Situ</i> Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS Nano, 2017, 11, 9093-9102.	7.3	133
205	Facile and Rapid Growth of Nanostructured Ln-BTC Metal–Organic Framework Films by Electrophoretic Deposition for Explosives sensing in Gas and Cr ³⁺ Detection in Solution. Langmuir, 2017, 33, 14238-14243.	1.6	39
206	Anionâ€Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis. Advanced Materials, 2017, 29, 1703436.	11.1	58
207	Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95.	5.7	220
208	Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chemical Society Reviews, 2017, 46, 569-585.	18.7	97
209	Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Applied Catalysis B: Environmental, 2017, 201, 629-635.	10.8	109
210	Intravoxel incoherent motion diffusion-weighted imaging in stroke patients: initial clinical experience. Clinical Radiology, 2016, 71, 938.e11-938.e16.	0.5	25
211	Synthesis of Iron Nanometallic Classes and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie, 2016, 128, 2141-2146.	1.6	130
212	Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic–Inorganic Hybridization into Frameworks. Advanced Materials, 2016, 28, 3235-3272.	11.1	291
213	Morphologyâ€Tailoring of a Red AlEgen from Microsized Rods to Nanospheres for Tumorâ€Targeted Bioimaging. Advanced Materials, 2016, 28, 3187-3193.	11.1	89
214	Sensitive imaging and effective capture of Cu2+: Towards highly efficient theranostics of Alzheimer's disease. Biomaterials, 2016, 104, 158-167.	5.7	64
215	Amorphous iron nanoparticles: special structural and physicochemical features enable chemical dynamic therapy for tumors. Nanomedicine, 2016, 11, 1189-1191.	1.7	17
216	A post-grafting strategy to modify g-C ₃ N ₄ with aromatic heterocycles for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 13814-13821.	5.2	113

#	Article	IF	CITATIONS
217	Triggered-release drug delivery nanosystems for cancer therapy by intravenous injection: where are we now?. Expert Opinion on Drug Delivery, 2016, 13, 1195-1198.	2.4	22
218	"Manganese Extraction―Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 2016, 138, 9881-9894.	6.6	246
219	Template-Free Synthesis of Hollow/Porous Organosilica–Fe ₃ O ₄ Hybrid Nanocapsules toward Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Therapy. ACS Applied Materials & Interfaces, 2016, 8, 29986-29996.	4.0	32
220	Manganese Oxide Nanorodâ€Decorated Mesoporous ZSMâ€5 Composite as a Preciousâ€Metalâ€Free Electrode Catalyst for Oxygen Reduction. ChemSusChem, 2016, 9, 1010-1019.	3.6	12
221	A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for Acidity/Reducibility-Specific Photothermal Conversion. Journal of the American Chemical Society, 2016, 138, 8156-8164.	6.6	168
222	Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today, 2016, 11, 292-308.	6.2	210
223	Large Poreâ€5ized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Advanced Materials, 2016, 28, 1963-1969.	11.1	245
224	Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie - International Edition, 2016, 55, 2101-2106.	7.2	930
225	Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomaterials, 2016, 84, 13-24.	5.7	189
226	PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials, 2016, 76, 218-225.	5.7	90
227	Integrating Anatomic and Functional Dual-Mode Magnetic Resonance Imaging: Design and Applicability of a Bifunctional Contrast Agent. ACS Nano, 2016, 10, 3783-3790.	7.3	44
228	Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy, 2016, 19, 145-155.	8.2	349
229	Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomaterialia, 2016, 30, 378-387.	4.1	78
230	Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution. Journal of Hazardous Materials, 2016, 302, 57-64.	6.5	134
231	Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2016, 182, 68-73.	10.8	150
232	Metal–Organic Frameworks with Boronic Acid Suspended and Their Implication for <i>cis</i> â€Điol Moieties Binding. Advanced Functional Materials, 2015, 25, 3847-3854.	7.8	59
233	Nuclearâ€Targeting MSNsâ€Based Drug Delivery System: Global Gene Expression Analysis on the MDRâ€Overcoming Mechanisms. Advanced Healthcare Materials, 2015, 4, 2641-2648.	3.9	23
234	Intelligent MnO ₂ Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pHâ€/H ₂ O ₂ â€Responsive UCL Imaging and Oxygenâ€Elevated Synergetic Therapy. Advanced Materials, 2015, 27, 4155-4161.	11.1	599

#	Article	IF	CITATIONS
235	Injectable 2D MoS ₂ â€Integrated Drug Delivering Implant for Highly Efficient NIRâ€Triggered Synergistic Tumor Hyperthermia. Advanced Materials, 2015, 27, 7117-7122.	11.1	238
236	Xâ€ray Radiationâ€Controlled NOâ€Release for Onâ€Demand Depthâ€Independent Hypoxic Radiosensitization. Angewandte Chemie - International Edition, 2015, 54, 14026-14030.	7.2	241
237	Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angewandte Chemie - International Edition, 2015, 54, 8105-8109.	7.2	374
238	A Prussian Blueâ€Based Core–Shell Hollowâ€6tructured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pHâ€Responsive Longitudinal Relaxivity. Advanced Materials, 2015, 27, 6382-6389.	11.1	233
239	CO ₂ bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation. Theranostics, 2015, 5, 1291-1302.	4.6	90
240	Design of a meso-structured Pd/NiO catalyst for highly efficient low temperature CO oxidation under ambient conditions. RSC Advances, 2015, 5, 40352-40357.	1.7	6
241	Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2015, 7, 11956-11964.	4.0	131
242	A highly moisture-resistant Fe-doped mesoporous Co ₃ O ₄ catalyst for efficient low-temperature CO oxidation. New Journal of Chemistry, 2015, 39, 1742-1748.	1.4	19
243	Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials, 2015, 49, 1-8.	5.7	131
244	Perfluoropentane-Encapsulated Hollow Mesoporous Prussian Blue Nanocubes for Activated Ultrasound Imaging and Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces, 2015, 7, 4579-4588.	4.0	126
245	Ultrasmall Cu _{2â€<i>x</i>} S Nanodots for Highly Efficient Photoacoustic Imagingâ€Guided Photothermal Therapy. Small, 2015, 11, 2275-2283.	5.2	184
246	Brand new P-doped g-C ₃ N ₄ : enhanced photocatalytic activity for H ₂ evolution and Rhodamine B degradation under visible light. Journal of Materials Chemistry A, 2015, 3, 3862-3867.	5.2	497
247	A Versatile Nanotheranostic Agent for Efficient Dualâ€Mode Imaging Guided Synergistic Chemoâ€Thermal Tumor Therapy. Advanced Functional Materials, 2015, 25, 2520-2529.	7.8	155
248	SnO ₂ nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation. Energy and Environmental Science, 2015, 8, 1261-1266.	15.6	50
249	White matter differences between multiple system atrophy (parkinsonian type) and Parkinson's disease: A diffusion tensor image study. Neuroscience, 2015, 305, 109-116.	1.1	30
250	Construction of Graphitic C ₃ N ₄ -Based Intramolecular Donor–Acceptor Conjugated Copolymers for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2015, 5, 5008-5015.	5.5	293
251	One-pot synthesis of magnetite-loaded dual-mesoporous silica spheres for T2-weighted magnetic resonance imaging and drug delivery. RSC Advances, 2015, 5, 39719-39725.	1.7	2
252	Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials, 2015, 60, 31-41.	5.7	89

#	Article	IF	CITATIONS
253	Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry A, 2015, 3, 7445-7452.	5.2	330
254	A Facile Oneâ€Pot Synthesis of a Twoâ€Dimensional MoS ₂ /Bi ₂ S ₃ Composite Theranostic Nanosystem for Multiâ€Modality Tumor Imaging and Therapy. Advanced Materials, 2015, 27, 2775-2782.	11.1	385
255	Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 2015, 69, 89-98.	5.7	76
256	Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chemical Science, 2015, 6, 1747-1753.	3.7	88
257	Largeâ€Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Coâ€templating Assembly and Nuclearâ€Targeted Gene Delivery. Advanced Materials, 2015, 27, 215-222.	11.1	266
258	Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence. Angewandte Chemie - International Edition, 2015, 54, 1770-1774.	7.2	420
259	Nanobiotechnology Promotes Noninvasive Highâ€Intensity Focused Ultrasound Cancer Surgery. Advanced Healthcare Materials, 2015, 4, 158-165.	3.9	54
260	Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials, 2015, 39, 206-217.	5.7	304
261	Bi 2 S 3 -embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials, 2015, 37, 447-455.	5.7	156
262	Effect of polymer grinding aids on the grindability and strength of cement. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
263	Monodispersed and Ordered Largeâ€Pore Mesoporous Silica Nanospheres with Tunable Pore Structure for Magnetic Functionalization and Gene Delivery. Advanced Materials, 2014, 26, 4947-4953.	11.1	143
264	A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials, 2014, 35, 5875-5885.	5.7	80
265	Ultrasmall Confined Iron Oxide Nanoparticle MSNs as a pHâ€Responsive Theranostic Platform. Advanced Functional Materials, 2014, 24, 4273-4283.	7.8	66
266	Hollow‣tructured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications. Advanced Materials, 2014, 26, 3176-3205.	11.1	668
267	MSN Anti ancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 2014, 26, 391-411.	11.1	418
268	Dual-Targeting Upconversion Nanoprobes across the Blood–Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma. ACS Nano, 2014, 8, 1231-1242.	7.3	279
269	Realâ€Time In Vivo Quantitative Monitoring of Drug Release by Dualâ€Mode Magnetic Resonance and Upconverted Luminescence Imaging. Angewandte Chemie - International Edition, 2014, 53, 4551-4555.	7.2	174
270	Multifunctional Graphene Oxideâ€based Triple Stimuliâ€Responsive Nanotheranostics. Advanced Functional Materials, 2014, 24, 4386-4396.	7.8	115

#	Article	IF	CITATIONS
271	Inorganic Nanoparticle-Based Drug Codelivery Nanosystems To Overcome the Multidrug Resistance of Cancer Cells. Molecular Pharmaceutics, 2014, 11, 2495-2510.	2.3	139
272	Ultrasmall NaGdF ₄ Nanodots for Efficient MR Angiography and Atherosclerotic Plaque Imaging. Advanced Materials, 2014, 26, 3867-3872.	11.1	158
273	Intranuclear Photosensitizer Delivery and Photosensitization for Enhanced Photodynamic Therapy with Ultralow Irradiance. Advanced Functional Materials, 2014, 24, 7318-7327.	7.8	128
274	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	6.6	338
275	Mesostructured Pd/Mn ₃ O ₄ catalyst for efficient low-temperature CO oxidation especially under moisture condition. RSC Advances, 2014, 4, 35762-35768.	1.7	14
276	Conjugation-induced fluorescence labelling of mesoporous silica nanoparticles for the sensitive and selective detection of copper ions in aqueous solution. New Journal of Chemistry, 2014, 38, 6017-6024.	1.4	14
277	Fabrication of mesoporous silica nanoparticles hybridised with fluorescent AIE-active quinoline-malononitrile for drug delivery and bioimaging. RSC Advances, 2014, 4, 58976-58981.	1.7	15
278	Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation. Journal of the American Chemical Society, 2014, 136, 9701-9709.	6.6	304
279	Silica Nanospheres: Monodispersed and Ordered Large-Pore Mesoporous Silica Nanospheres with Tunable Pore Structure for Magnetic Functionalization and Gene Delivery (Adv. Mater. 29/2014). Advanced Materials, 2014, 26, 4910-4910.	11.1	0
280	A Drug–Perfluorocarbon Nanoemulsion with an Ultrathin Silica Coating for the Synergistic Effect of Chemotherapy and Ablation by Highâ€Intensity Focused Ultrasound. Advanced Materials, 2014, 26, 7378-7385.	11.1	130
281	Breakâ€up of Twoâ€Dimensional MnO ₂ Nanosheets Promotes Ultrasensitive pHâ€Triggered Theranostics of Cancer. Advanced Materials, 2014, 26, 7019-7026.	11.1	404
282	An Intelligent Nanotheranostic Agent for Targeting, Redoxâ€Responsive Ultrasound Imaging, and Imagingâ€Guided Highâ€Intensity Focused Ultrasound Synergistic Therapy. Small, 2014, 10, 1403-1411.	5.2	78
283	A combined "RAFT―and "Graft From―polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy. Journal of Materials Chemistry B, 2014, 2, 5828-5836.	2.9	36
284	MSNâ€Mediated Sequential Vascularâ€toâ€Cell Nuclearâ€Targeted Drug Delivery for Efficient Tumor Regression. Advanced Materials, 2014, 26, 6742-6748.	11.1	206
285	Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opinion on Drug Delivery, 2014, 11, 917-930.	2.4	62
286	Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3. Journal of Hazardous Materials, 2014, 278, 350-359.	6.5	78
287	A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. Journal of the American Chemical Society, 2013, 135, 13041-13048.	6.6	510
288	Facile Synthesis of Magnetite/Perfluorocarbon Coâ€Loaded Organic/Inorganic Hybrid Vesicles for Dualâ€Modality Ultrasound/Magnetic Resonance Imaging and Imagingâ€Guided Highâ€Intensity Focused Ultrasound Ablation. Advanced Materials, 2013, 25, 2686-2692.	11.1	93

#	Article	IF	CITATIONS
289	Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials, 2013, 34, 2719-2730.	5.7	228
290	A pH-responsive hybrid fluorescent nanoprober for real time cell labeling and endocytosis tracking. Biomaterials, 2013, 34, 10182-10190.	5.7	46
291	Colloidal HPMO Nanoparticles: Silicaâ€Etching Chemistry Tailoring, Topological Transformation, and Nanoâ€Biomedical Applications. Advanced Materials, 2013, 25, 3100-3105.	11.1	205
292	A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials, 2013, 34, 3390-3401.	5.7	160
293	Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging. Journal of the American Chemical Society, 2013, 135, 6494-6503.	6.6	318
294	One-step approach to synthesize hollow mesoporous silica spheres co-templated by an amphiphilic block copolymer and cationic surfactant. RSC Advances, 2013, 3, 6767.	1.7	27
295	Constructing NIR silica–cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. Chemical Science, 2013, 4, 1221.	3.7	76
296	A facile one-pot synthesis of hierarchically porous Cu(I)-ZSM-5 for radicals-involved oxidation of cyclohexane. Applied Catalysis A: General, 2013, 451, 112-119.	2.2	32
297	On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chemical Reviews, 2013, 113, 2139-2181.	23.0	558
298	Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon, 2013, 61, 423-430.	5.4	291
299	NIRâ€Triggered Anticancer Drug Delivery by Upconverting Nanoparticles with Integrated Azobenzeneâ€Modified Mesoporous Silica. Angewandte Chemie - International Edition, 2013, 52, 4375-4379.	7.2	693
300	CTAB-templated mesoporous TS-1 zeolites as active catalysts in a desulfurization process: the decreased hydrophobicity is more favourable in thiophene oxidation. RSC Advances, 2013, 3, 4193.	1.7	51
301	In Vivo Bioâ€Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 2013, 25, 3144-3176.	11.1	636
302	One-pot pyrolytic synthesis of C–N-codoped mesoporous anatase TiO2and its highly efficient photo-degradation properties. New Journal of Chemistry, 2013, 37, 451-457.	1.4	7
303	Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 2013, 34, 2057-2068.	5.7	135
304	Manganese-Loaded Dual-Mesoporous Silica Spheres for Efficient T1- and T2-Weighted Dual Mode Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2013, 5, 9942-9948.	4.0	75
305	Gd ³⁺ â€Ionâ€Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization. Advanced Functional Materials, 2013, 23, 298-307.	7.8	147
306	Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Scientific Reports, 2013, 3, 1751.	1.6	83

#	Article	IF	CITATIONS
307	Intrinsic Peroxidase-like Catalytic Activity of Hydrophilic Mesoporous Carbons. Chemistry Letters, 2013, 42, 785-787.	0.7	7
308	An organosilane route to mesoporous silica nanoparticles with tunable particle and pore sizes and their anticancer drug delivery behavior. RSC Advances, 2012, 2, 5105.	1.7	14
309	Calcium doped mesoporous silica nanoparticles as efficient alendronate delivery vehicles. New Journal of Chemistry, 2012, 36, 1717.	1.4	26
310	Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials, 2012, 33, 7126-7137.	5.7	278
311	One-pot synthesis of uniform mesoporous rhodium oxide/alumina hybrid as high sensitivity and low power consumption methane catalytic combustion micro-sensor. Journal of Materials Chemistry, 2012, 22, 9263.	6.7	16
312	Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5722-5725.	6.6	899
313	Controlled synthesis of shell cross-linked magnetic micelles for efficient liver MR imaging. Journal of Materials Chemistry, 2012, 22, 24936.	6.7	12
314	Hyaluronic acid-conjugated mesoporous silica nanoparticles: excellent colloidal dispersity in physiological fluids and targeting efficacy. Journal of Materials Chemistry, 2012, 22, 5615.	6.7	83
315	Endosomal pH-activatable magnetic nanoparticle-capped mesoporous silica for intracellular controlled release. Journal of Materials Chemistry, 2012, 22, 15960.	6.7	57
316	Structure-property relationships in manganese oxide - mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials, 2012, 33, 2388-2398.	5.7	135
317	Synthesis of Lithium Metasilicate Powders at Low Temperature via Mechanical Milling. Journal of the American Ceramic Society, 2012, 95, 1818-1821.	1.9	19
318	Perfluorohexaneâ€Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU). Advanced Materials, 2012, 24, 785-791.	11.1	207
319	Fabrication of uniform, biocompatible and multifunctional PCL-b-PAA copolymer-based hybrid micelles for magnetic resonance imaging. Journal of Materials Chemistry, 2011, 21, 13825.	6.7	25
320	Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery. Journal of Materials Chemistry, 2011, 21, 5290.	6.7	128
321	In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 2011, 36, 10513-10521.	3.8	21
322	A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011, 32, 7711-7720.	5.7	351
323	In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PECylation. Small, 2011, 7, 271-280.	5.2	547
324	Reversible Poreâ€Structure Evolution in Hollow Silica Nanocapsules: Large Pores for siRNA Delivery and Nanoparticle Collecting. Small, 2011, 7, 2935-2944.	5.2	117

#	Article	IF	CITATIONS
325	Positive and Negative Lattice Shielding Effects Co-existing in Gd (III) Ion Doped Bifunctional Upconversion Nanoprobes. Advanced Functional Materials, 2011, 21, 4285-4294.	7.8	201
326	Facile Synthesis of Monodisperse Superparamagnetic Fe ₃ O ₄ Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Advanced Materials, 2011, 23, 5392-5397.	11.1	264
327	Theranostic Nanoshells: Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy (Adv. Mater. 45/2011). Advanced Materials, 2011, 23, 5332-5332.	11.1	4
328	Multifunctional Mesoporous Composite Nanocapsules for Highly Efficient MRIâ€Guided Highâ€Intensity Focused Ultrasound Cancer Surgery. Angewandte Chemie - International Edition, 2011, 50, 12505-12509.	7.2	166
329	The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 2010, 31, 1085-1092.	5.7	433
330	Preparation of Uniform, Waterâ€Soluble, and Multifunctional Nanocomposites with Tunable Sizes. Advanced Functional Materials, 2010, 20, 773-780.	7.8	78
331	Graphitized mesoporous carbon supported Pt–SnO2 nanoparticles as a catalyst for methanol oxidation. Fuel, 2010, 89, 372-377.	3.4	39
332	Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. ACS Nano, 2010, 4, 529-539.	7.3	615
333	Core/Shell Structured Hollow Mesoporous Nanocapsules: A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery. ACS Nano, 2010, 4, 6001-6013.	7.3	592
334	A facile dual templating route to fabricate hierarchically mesostructured materials. Journal of Materials Science, 2009, 44, 6519-6524.	1.7	6
335	Ultrafast nonlinear optical response of Ag nanoparticles embedded in mesoporous thin films. Research on Chemical Intermediates, 2009, 35, 807-816.	1.3	8
336	PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation. Carbon, 2009, 47, 186-194.	5.4	57
337	Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route. Journal of Materials Chemistry, 2009, 19, 2778.	6.7	142
338	Uniform Rattleâ€ŧype Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustainedâ€Release Property. Advanced Functional Materials, 2008, 18, 2780-2788.	7.8	420
339	Platinum/Mesoporous WO ₃ as a Carbon-Free Electrocatalyst with Enhanced Electrochemical Activity for Methanol Oxidation. Journal of Physical Chemistry B, 2008, 112, 12024-12031.	1.2	114
340	A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents. Journal of Materials Chemistry, 2008, 18, 2733.	6.7	74
341	Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008, 18, 3575.	6.7	55
342	Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie - International Edition, 2005, 44, 5083-5087.	7.2	914

#	Article	IF	CITATIONS
343	Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. Journal of the American Chemical Society, 2005, 127, 8916-8917.	6.6	739
344	Capecitabine (X) combined with vinorelbine (V) in Chinese patients (pts) with metastatic breast cancer (MBC). Journal of Clinical Oncology, 2004, 22, 741-741.	0.8	3
345	Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5550-5555.	3.3	452
346	Reactivity of Glutaredoxins 1, 2, and 3 fromEscherichia coli Shows That Glutaredoxin 2 Is the Primary Hydrogen Donor to ArsC-catalyzed Arsenate Reduction. Journal of Biological Chemistry, 1999, 274, 36039-36042.	1.6	138
347	Cavernous hemangiomas in the cavernous sinus. Case reports. World Neurosurgery, 1999, 52, 473-479.	1.3	31
348	Serum amyloid P is not present in amyloid β deposits of a transgenic animal modela. NeuroReport, 1999, 10, 3229-3232.	0.6	19
349	Evidence of Hepatocyte Apoptosis in Rat Liver after the Administration of Carbon Tetrachloride. American Journal of Pathology, 1998, 153, 515-525.	1.9	228
350	The Role of Protegrins and Other Elastase-Activated Polypeptides in the Bactericidal Properties of Porcine Inflammatory Fluids. Infection and Immunity, 1998, 66, 3611-3617.	1.0	65
351	Expression of P-selectin on hepatic endothelia and platelets promoting neutrophil removal by liver macrophages. Blood, 1998, 92, 520-8.	0.6	16
352	Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology, 1996, 24, 1256-1263.	3.6	88
353	Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology, 1996, 24,	3.6	31