Christopher D Spicer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1814867/publications.pdf

Version: 2024-02-01

394421 526287 3,022 27 19 citations h-index papers

g-index 32 32 32 5212 docs citations times ranked citing authors all docs

27

#	Article	IF	CITATIONS
1	Photochemical Methods for Peptide Macrocyclisation. Chemistry - A European Journal, 2021, 27, 69-88.	3.3	22
2	High-Throughput Peptide Derivatization toward Supramolecular Diversification in Microtiter Plates. ACS Nano, 2021, 15, 4034-4044.	14.6	11
3	Self-Assembly and Bioconjugation in Drug Delivery. Advanced Drug Delivery Reviews, 2021, 174, 628-629.	13.7	3
4	Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polymer Chemistry, 2020, 11, 184-219.	3.9	331
5	Tuneable peptide cross-linked nanogels for enzyme-triggered protein delivery. Journal of Materials Chemistry B, 2020, 8, 8894-8907.	5.8	21
6	An Electroactive Oligoâ€EDOT Platform for Neural Tissue Engineering. Advanced Functional Materials, 2020, 30, 2003710.	14.9	32
7	Synthesis of Phospho-Amino Acid Analogues as Tissue Adhesive Cement Additives. ACS Central Science, 2020, 6, 226-231.	11.3	14
8	Shape-controlled synthesis and $\langle i \rangle$ in situ $\langle i \rangle$ characterisation of anisotropic Au nanomaterials using liquid cell transmission electron microscopy. Nanoscale, 2019, 11, 16801-16809.	5.6	9
9	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	38.1	352
10	A Novel Class of Injectable Bioceramics That Glue Tissues and Biomaterials. Materials, 2018, 11, 2492.	2.9	42
11	Palladium-mediated enzyme activation suggests multiphase initiation of glycogenesis. Nature, 2018, 563, 235-240.	27.8	42
12	Achieving Controlled Biomolecule–Biomaterial Conjugation. Chemical Reviews, 2018, 118, 7702-7743.	47.7	165
13	Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot–DNA Conjugates. ACS Applied Materials & Interfaces, 2018, 10, 28290-28300.	8.0	59
14	Synthesis of Hetero-bifunctional, End-Capped Oligo-EDOT Derivatives. CheM, 2017, 2, 125-138.	11.7	21
15	Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomaterialia, 2017, 51, 75-88.	8.3	49
16	Facet-Dependent Interactions of Islet Amyloid Polypeptide with Gold Nanoparticles: Implications for Fibril Formation and Peptide-Induced Lipid Membrane Disruption. Chemistry of Materials, 2017, 29, 1550-1560.	6.7	35
17	Probing amylin fibrillation at an early stage via a tetracysteine-recognising fluorophore. Talanta, 2017, 173, 44-50.	5.5	12
18	Electrospun aniline-tetramer-co-polycaprolactone fibers for conductive, biodegradable scaffolds. MRS Communications, 2017, 7, 375-382.	1.8	17

#	Article	IF	Citations
19	Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants. Acta Biomaterialia, 2016, 46, 308-322.	8.3	35
20	Bio-inspired Maillard-Like reactions enable a simple and sensitive assay for colorimetric detection of methylglyoxal. Chemical Communications, 2015, 51, 11026-11029.	4.1	27
21	Designing logical codon reassignment – Expanding the chemistry in biology. Chemical Science, 2015, 6, 50-69.	7.4	399
22	Selective chemical protein modification. Nature Communications, 2014, 5, 4740.	12.8	790
23	Selfâ€Liganded Suzuki–Miyaura Coupling for Siteâ€Selective Protein PEGylation. Angewandte Chemie - International Edition, 2013, 52, 3916-3921.	13.8	98
24	Rewriting the bacterial glycocalyx via Suzuki–Miyaura cross-coupling. Chemical Communications, 2013, 49, 2747.	4.1	66
25	Palladium-Mediated Site-Selective Suzuki-Miyaura Protein Modification., 2013,, 1656-1663.		0
26	Palladium-Mediated Cell-Surface Labeling. Journal of the American Chemical Society, 2012, 134, 800-803.	13.7	225
27	Palladium-mediated site-selective Suzuki–Miyaura protein modification at genetically encoded aryl halides. Chemical Communications, 2011, 47, 1698.	4.1	114