Mutsumi Kimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181434/publications.pdf

Version: 2024-02-01

149 papers 1,787 citations

394421 19 h-index 289244 40 g-index

151 all docs

151 docs citations

151 times ranked

1470 citing authors

#	Article	IF	CITATIONS
1	Trap densities in amorphous-InGaZnO4 thin-film transistors. Applied Physics Letters, 2008, 92, .	3.3	290
2	Tin monoxide as an sâ€orbitalâ€based pâ€type oxide semiconductor: Electronic structures and TFT application. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2187-2191.	1.8	213
3	Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Applied Physics Letters, 2011, 99, .	3.3	203
4	Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-ln–Ga–Zn–O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors. Applied Physics Letters, 2010, 96, .	3.3	91
5	Rare-metal-free high-performance Ga-Sn-O thin film transistor. Scientific Reports, 2017, 7, 44326.	3.3	68
6	Analysis and Classification of Degradation Phenomena in Polycrystalline-Silicon Thin Film Transistors Fabricated by a Low-Temperature Process Using Emission Light Microscopy. Japanese Journal of Applied Physics, 2003, 42, 1168-1172.	1.5	51
7	Intrinsic carrier mobility in amorphous In–Ga–Zn–O thin-film transistors determined by combined field-effect technique. Applied Physics Letters, 2010, 96, 262105.	3.3	51
8	Degradation Evaluation of \$alpha\$-IGZO TFTs for Application to AM-OLEDs. IEEE Electron Device Letters, 2010, 31, 963-965.	3.9	42
9	Emerging applications using metal-oxide semiconductor thin-film devices. Japanese Journal of Applied Physics, 2019, 58, 090503.	1.5	34
10	Temperature Sensor Using Thin-Film Transistor. IEEE Sensors Journal, 2011, 11, 995-998.	4.7	29
11	Evaluation of Thin-Film Photodiodes and Development of Thin-Film Phototransistor. Japanese Journal of Applied Physics, 2008, 47, 1924-1929.	1.5	28
12	An Artificial Neural Network at Device Level Using Simplified Architecture and Thin-Film Transistors. IEEE Transactions on Electron Devices, 2010, 57, 2744-2750.	3.0	27
13	Record-High-Performance Hydrogenated In–Ga–Zn–O Flexible Schottky Diodes. ACS Applied Materials & Interfaces, 2020, 12, 47739-47746.	8.0	27
14	Cellular neural network formed by simplified processing elements composed of thin-film transistors. Neurocomputing, 2017, 248, 112-119.	5.9	25
15	Mechanism Analysis of Off-Leakage Current in an LDD Poly-Si TFT Using Activation Energy. IEEE Electron Device Letters, 2011, 32, 764-766.	3.9	23
16	Complete Extraction of Trap Densities in Poly-Si Thin-Film Transistors. IEEE Transactions on Electron Devices, 2010, 57, 3426-3433.	3.0	21
17	Artificial Retina Using Thin-Film Transistors Driven by Wireless Power Supply. IEEE Sensors Journal, 2011, 11, 1564-1567.	4.7	20
18	Thermal Sensor Using Poly-Si Thin-Film Transistor With Widened Detectable Temperature Range. IEEE Electron Device Letters, 2011, 32, 333-335.	3.9	20

#	Article	IF	Citations
19	Amorphous metal oxide semiconductor thin film, analog memristor, and autonomous local learning for neuromorphic systems. Scientific Reports, $2021, 11, 580$.	3.3	20
20	Magnetic-Field Area Sensor Using Poly-Si Micro Hall Devices. IEEE Electron Device Letters, 2010, 31, 1260-1262.	3.9	19
21	Anomalous Increase in Field-Effect Mobility in In–Ga–Zn–O Thin-Film Transistors Caused by Dry-Etching Damage Through Etch-Stop Layer. IEEE Transactions on Electron Devices, 2016, 63, 2785-2789.	3.0	19
22	In–Ga–Zn–O Thin-Film Devices As Synapse Elements in a Neural Network. IEEE Journal of the Electron Devices Society, 2018, 6, 100-105.	2.1	18
23	Extraction of Trap Densities at Front and Back Interfaces in Thin-Film Transistors. Japanese Journal of Applied Physics, 2004, 43, 71-76.	1.5	17
24	Effects of chemical stoichiometry of channel region on bias instability in ZnO thin-film transistors. Applied Physics Letters, $2011, 98, \ldots$	3.3	17
25	Memristive characteristic of an amorphous Ga-Sn-O thin-film device. Scientific Reports, 2019, 9, 2757.	3.3	17
26	An Integrated Potentiostat With an Electrochemical Cell Using Thin-Film Transistors. IEEE Transactions on Electron Devices, 2009, 56, 2114-2119.	3.0	16
27	Thermoelectric effects of amorphous Ga–Sn–O thin film. Japanese Journal of Applied Physics, 2017, 56, 070309.	1.5	16
28	Pulsewidth Modulation With Current Uniformization for AM-OLEDs. IEEE Transactions on Electron Devices, 2010, 57, 2624-2630.	3.0	15
29	Mechanism analysis of photoleakage current in ZnO thin-film transistors using device simulation. Applied Physics Letters, 2010, 97, 163503.	3.3	15
30	Device Characterization of p/i/n Thin-Film Phototransistor for Photosensor Applications. IEEE Electron Device Letters, 2010, 31, 984-986.	3.9	14
31	Extraction of trap densities in entire bandgap of poly-Si thin-film transistors fabricated by solid-phase crystallization and dependence on process conditions of post annealing. Solid-State Electronics, 2011, 63, 94-99.	1.4	13
32	Thermal sensor employing ring oscillator composed of poly-Si thin-film transistors. Solid-State Electronics, 2013, 79, 14-17.	1.4	13
33	Extraction Technique of Trap Densities in Thin Films and at Insulator Interfaces of Thin-Film Transistors. IEEE Electron Device Letters, 2010, 31, 570-572.	3.9	11
34	Hybrid-Type Temperature Sensor Using Thin-Film Transistors. IEEE Journal of the Electron Devices Society, 2014, 2, 182-186.	2.1	11
35	Apoptotic self-organized electronic device using thin-film transistors for artificial neural networks with unsupervised learning functions. Japanese Journal of Applied Physics, 2015, 54, 03CB02.	1.5	11
36	Amorphous-Metal-Oxide-Semiconductor Thin-Film Planar-Type Spike-Timing- Dependent-Plasticity Synapse Device. IEEE Electron Device Letters, 2021, 42, 1014-1016.	3.9	11

#	Article	IF	CITATIONS
37	Soft Actuator Using Ionic Polymer–Metal Composite Composed of Gold Electrodes Deposited Using Vacuum Evaporation. IEEE Electron Device Letters, 2012, 33, 1087-1089.	3.9	10
38	Reduction of Photo-Leakage Current in ZnO Thin-Film Transistors With Dual-Gate Structure. IEEE Electron Device Letters, 2011, 32, 509-511.	3.9	9
39	Temperature Dependences of \$I\$– \$V\$ Characteristics of SD and LDD Poly-Si TFTs. IEEE Electron Device Letters, 2012, 33, 682-684.	3.9	9
40	Room-temperature fabrication of a Ga-Sn-O thin-film transistor. Solid-State Electronics, 2017, 134, 19-21.	1.4	9
41	Memristive Characteristic of an Amorphous Ga-Sn-O Thin-Film Device with Double Layers of Different Oxygen Density. Materials, 2019, 12, 3236.	2.9	9
42	Neuromorphic System with Crosspoint-Type Amorphous Ga-Sn-O Thin-Film Devices as Self-Plastic Synapse Elements. ECS Transactions, 2019, 90, 157-166.	0.5	9
43	Neuromorphic chip integrated with a large-scale integration circuit and amorphous-metal-oxide semiconductor thin-film synapse devices. Scientific Reports, 2022, 12, 5359.	3.3	9
44	Extraction of trap densities in poly-Si thin-film transistors fabricated by solid-phase crystallization and dependence on temperature and time of post annealing. Solid-State Electronics, 2010, 54, 1500-1504.	1.4	8
45	Degradation evaluation of poly-Si TFTs by comparing normal and reverse characteristics and behavior analysis of hot-carrier degradation. Solid-State Electronics, 2011, 56, 207-210.	1.4	8
46	Magnetoresistive Effect of Amorphous In-Ga-Zn-O Magnetic Field Sensors. IEEE Electron Device Letters, 2017, 38, 1143-1145.	3.9	8
47	Pulseâ€width modulation with current uniformization for <scp>AMâ€OLED</scp> microâ€displays on <scp>Si LSI</scp> chips. Journal of the Society for Information Display, 2019, 27, 402-408.	2.1	8
48	Characteristic Analysis of p-i-n Thin-Film Phototransistor Using Device Simulation. IEEE Transactions on Electron Devices, 2011, 58, 3472-3476.	3.0	7
49	Maximum applied voltage detector using amorphous In–Ga–Zn–O thin-film transistor exposed to ozone annealing. Solid-State Electronics, 2012, 75, 74-76.	1.4	7
50	Photosensing circuit using thin-film transistors for retinal prosthesis. Japanese Journal of Applied Physics, 2018, 57, 1002B1.	1.5	7
51	Memristor property of an amorphous Sn–Ga–O thin-film device deposited using mist chemical-vapor-deposition method. AIP Advances, 2020, 10, .	1.3	7
52	Retinal Prosthesis Using Thin-Film Devices on a Transparent Substrate and Wireless Power Transfer. IEEE Transactions on Electron Devices, 2020, 67, 529-534.	3.0	7
53	Time-Ratio Grayscale and Hopping Scan with Current Uniformization for Thin-Film Transistor Driven Organic Light-Emitting Diode Displays. Japanese Journal of Applied Physics, 2006, 45, 4407-4412.	1.5	6
54	Behavior Analysis of an LDD Poly-Si TFT Using 2-D Device Simulation. IEEE Transactions on Electron Devices, 2012, 59, 705-709.	3.0	6

#	Article	IF	Citations
55	Infrared sensors using polyâ€Si thinâ€film transistors for proximity sensors integrated in smartphone displays. Journal of the Society for Information Display, 2019, 27, 147-154.	2.1	6
56	Neuromorphic System Using Memcapacitors and Autonomous Local Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 2366-2373.	11.3	6
57	Amorphous Ga–Sn–O thin-film crosspoint-type spike-timing-dependent-plasticity device. Japanese Journal of Applied Physics, 2021, 60, 078003.	1.5	6
58	Extraction Method of Trap Densities in TFTs Combining \$C\$â€"\$V\$ and F-E Methods. IEEE Electron Device Letters, 2012, 33, 845-847.	3.9	5
59	Gamma Correction of Pulse Width Modulation With Current Uniformization for AM-OLEDs. Journal of Display Technology, 2012, 8, 245-249.	1.2	5
60	49.3: Highâ€Resolution Activeâ€Matrix Imager using Poly‧i Thinâ€Film Phototransistors in a Magnifying Viewer. Digest of Technical Papers SID International Symposium, 2014, 45, 709-712.	0.3	5
61	A Programmable Calculation Unit Employing Memcapacitor-based Neuromorphic Circuit. , 2019, , .		5
62	P-1: Dependence of Poly-Si TFT Characteristics on Oxide Interface Traps and Grain Boundary Traps and its Application to Diagnosis of Fabrication Processes. Digest of Technical Papers SID International Symposium, 2004, 35, 220.	0.3	4
63	Evaluation of trap states at front and back oxide interfaces and grain boundaries using electrical characteristic analysis and device simulation of polycrystalline silicon thin-film transistors. Electronics and Communications in Japan, 2005, 88, 1-10.	0.2	4
64	Evaluation of Thermal Annealing Before and After Formation of Gate Insulator Films by Extracting Trap Densities for SPC Poly-Si TFTs. IEEE Electron Device Letters, 2013, 34, 256-258.	3.9	4
65	Thermal Sensor Using Poly-Si Thin-Film Transistors With Self-Aligned and Offset Gate Structures. IEEE Sensors Journal, 2013, 13, 1771-1774.	4.7	4
66	Artificial neural network using thin-film transistors - Working confirmation of asymmetric circuit , 2013, , .		4
67	Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	4
68	Hybrid-Type Temperature Sensor Using Poly-Si Thin-Film Transistors Outputting Rectangle Waveforms. IEEE Sensors Journal, 2017, 17, 4365-4368.	4.7	4
69	Neuromorphic Hardware Using Simplified Elements and Thin-Film Semiconductor Devices as Synapse Elements - Simulation of Hopfield and Cellular Neural Network Lecture Notes in Computer Science, 2017, , 769-776.	1.3	4
70	Influence of characteristic variation of oxide semiconductor and comparison of the activation function in neuromorphic hardware. Nonlinear Theory and Its Applications IEICE, 2020, 11, 232-252.	0.6	4
71	2-D Simulator of Laser Crystallization for Polycrystalline-Silicon Thin-Film Transistors. IEEE Transactions on Semiconductor Manufacturing, 2011, 24, 472-476.	1.7	3
72	Characteristic evaluation of Ga-Sn-O films deposited using mist chemical vapor deposition. , 2017, , .		3

#	Article	IF	CITATIONS
73	Pâ€2: Pulseâ€Width Modulation with Current Uniformization for TFTâ€OLEDs. Digest of Technical Papers SID International Symposium, 2008, 39, 1173-1176.	0.3	2
74	p/i/n-Type poly-Si thin-film transistor for quasi-static capacitance–voltage measurement. Solid-State Electronics, 2013, 87, 1-3.	1.4	2
7 5	Pâ€3: Hybridâ€Type Temperature Sensor using Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2014, 45, 952-955.	0.3	2
76	Neuron MOS inverter and source follower using thin-film transistors. , 2015, , .		2
77	Characteristic evaluation of photo-induced current by infrared light irradiation in low-temperature poly-Si TFT. , $2016, $, .		2
78	Hopfield Neural Network with Double-Layer Amorphous Metal-Oxide Semiconductor Thin-Film Devices as Crosspoint-Type Synapse Elements and Working Confirmation of Letter Recognition. Lecture Notes in Computer Science, 2018, , 637-646.	1.3	2
79	Evaluation of Neuromorphic Hardware using Cellular Neural Networks and Oxide Semiconductors. , 2019, , .		2
80	P-182: Analysis of Bright Lines in Passive-Matrix OLEDs using High-Speed Photography. Digest of Technical Papers SID International Symposium, 2006, 37, 912.	0.3	1
81	P-1: Artificial Retina Using Thin-Film Devices. Digest of Technical Papers SID International Symposium, 2008, 39, 1169.	0.3	1
82	Artificial neural network using poly-Si TFTs - verification of multiple overwriting , 2011, , .		1
83	Features and applications of various TFTs - Si based matured TFTs and oxide semiconductor based transparent TFTs. , $2011, $, .		1
84	Artificial retina using poly-Si TFTs driven by wireless power supply. , 2012, , .		1
85	P.8: Trap States in Amorphous Inâ€5nâ€Znâ€O Thinâ€Film Transistors Analyzed Using Dependence on Channel Thickness. Digest of Technical Papers SID International Symposium, 2013, 44, 1014-1017.	0.3	1
86	P.3: 3â€D Stacked Complementary TFT Devices using nâ€type αâ€lGZO and pâ€type F8T2 TFTs â€" Operation Confirmation of NOT and NAND Logic Circuits â€". Digest of Technical Papers SID International Symposium, 2013, 44, 995-998.	0.3	1
87	Temperature Sensor employing Ring Oscillator composed of Poly-Si Thin-Film Transistors: Comparison between Lightly-Doped and Offset Drain Structures. IEICE Transactions on Electronics, 2014, E97.C, 1068-1073.	0.6	1
88	Neural network using FPGA for neurons and IGZO thin films for synapses. , 2016, , .		1
89	Development of Memristor Characteristic Device Using In-Ga-Zn-O Thin Film. , 2018, , .		1
90	Sensor applications of thinâ€film devices originating in display technologies. Journal of the Society for Information Display, 2019, 27, 741-756.	2.1	1

#	Article	IF	Citations
91	Ga-Sn-O Thin Film Synapse for Neuromorphic Device. , 2020, , .		1
92	Analysis of Carrier Mobility in Amorphous Metal-Oxide Semiconductor Thin-Film Transistor using Hall Effect. IEEE Electron Device Letters, 2020, , 1-1.	3.9	1
93	Switchover behavior between long-term potentiation and depression in amorphous Ga–Sn–O thin-film spike-timing-dependent-plasticity device. Japanese Journal of Applied Physics, 2022, 61, 058002.	1.5	1
94	Novel driving method to improve picture quality of active-matrix organic light-emitting diode displays. , 2009, , .		0
95	Analysis of hall effect in micro poly-Si Hall devices with p-type doping films for magnetic area sensors. , 2011, , .		0
96	Pâ€30: Artificial Retina using Polyâ€6i Thinâ€Film Transistors driven by Wireless Power Supply. Digest of Technical Papers SID International Symposium, 2011, 42, 1201-1204.	0.3	0
97	Dependence of off-leakage current on channel film quality in poly-Si thin-film transistors and analysis using device simulation. Solid-State Electronics, 2011, 57, 87-89.	1.4	0
98	Characteristic shift of a CTFT inverter using n-type IGZO and p-type F8T2 TFTs after temperature and operation stresses., 2012,,.		0
99	Retinal prosthesis of frequency modulation using thin-film photo transistors. , 2013, , .		0
100	Artificial retina using thin-film devices driven by wireless power supply $\$\#x2014$; Working confirmation of pattern recognition., 2014 ,,.		0
101	Soft actuator using ionic polymer-metal composite driven with ionic liquid. , 2014, , .		0
102	Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance. , 2014, , .		0
103	Multiple-input NAND cirucit using polycrystalline silicon thin-film transistors and set-reset flip-flop circuit using the NAND circuits. , $2014, ,$		0
104	Maximum and minimum voltage sample and hold circuits employing operational amplifiers composed of polycrystalline silicon thin-film transistors. , 2014, , .		0
105	6.2: Hybridâ€Type Temperature Sensors Using Thinâ€Film Transistors: Characteristic Comparion of n, p., and Pinâ€Type Transistors. Digest of Technical Papers SID International Symposium, 2015, 46, 40-44.	0.3	0
106	Hall effect in a p-type poly-Si thin-film transistor with Hall terminals. , 2015, , .		0
107	Characteristic analysis of thin-film phototransistors. , 2015, , .		0
108	Hybrid-type temperature sensor using thin-film transistors generating rectangle output waveform. , 2015, , .		0

#	Article	IF	CITATIONS
109	Hybrid-type temperature sensor using n-type low-temperature processed poly-Si thin-film transistors. , 2015, , .		0
110	Evaluation of $\ln < \inf > 2 < \inf > 0 < \inf > 3 < \inf > thin film deposited by RF magnetron sputtering. , 2015, , .$		0
111	Evaluation of SnO < inf > 2 < / inf > 1 < inf > 2 < / inf > 0 < inf > 3 < / inf > 1 thin film deposited by RF magnetron sputtering. , 2015, , .		0
112	Characteristic evaluation of Ga-Sn-O thin film by Hall measurement. , 2016, , .		0
113	Simplification of synapse devices in cellular neural network. , 2016, , .		0
114	Characteristic evaluation of Ga-Sn-O thin films fabricated using RF magnetron sputtering. , 2016, , .		0
115	Magnetoresistance effect of Ga-Sn-O thin-film device. , 2016, , .		0
116	Characteristic reliability of a hybrid-type temperature sensor using poly-Si thin-film transistors. , 2016, , .		0
117	Hall Effect in Thin-Film Transistor. IEEE Transactions on Electron Devices, 2016, , 1-3.	3.0	0
118	Evaluation of Ga-Sn-O films fabricated using mist chemical vapor deposition. , 2016, , .		0
119	Wireless power supply to artificial retina using poly-Si thin-film transistor. , 2016, , .		0
120	Stimulus performance of poly-Si thin-film transistor in in-vitro experiment for artificial retinas. , 2016, , .		0
121	Artificial neural networks using poly-Si thin-film transistors. , 2016, , .		0
122	Planar device using In-Ga-Zn-O semiconductor for synapse element in neural network. , 2017, , .		0
123	Magnetoresistance effect of Ga-Sn-O film deposited using mist chemical vapor deposition. , 2017, , .		0
124	Room-temperature forming of Ga-Sn-O film for thin-film transistors. , 2017, , .		0
125	Wireless power transmission to thin-film devices. , 2017, , .		0
126	Evaluation of thin-film biostimulating device using thin-film transistors., 2017,,.		0

#	Article	CITATIONS
127	Cross-point device using In-Ga-Zn-O semiconductor for synapse element in neural network., 2017,,.	O
128	Hall effect in thin-film transistor: - Sensitivity dependence on applied voltage , 2017, , .	0
129	Multilayer Cross-Point Synapses Using Ga-Sn-O Thin Films for Neural Network. , 2018, , .	O
130	Evaluation of (Bi, La)4Ti3012 Thin Film for Capacitor-Type Synapses. , 2018, , .	0
131	Evaluation of GTO Film Deposited Using mistCVD Method. , 2018, , .	O
132	Evaluation of Ga-Sn-O Thermoelectric Device. , 2018, , .	0
133	Multilayer Cross-Point Device Using IGZO as Synapses in Artificial Neural Networks. , 2018, , .	O
134	Cellular Neural Network using IGZO Thin Film as Synapses and LSI as Neurons. , 2018, , .	0
135	In-Ga-Zn-O Thin Film Synapse in Neural Network Using LSI. , 2018, , .	O
136	49.2: <i>Invited Paper:</i> Research and Applications of Amorphous Metalâ€Oxide Semiconductor Devices ―lnâ€Gaâ€Znâ€O and Gaâ€Snâ€O Thinâ€Film Devices ― Digest of Technical Papers SID International Symposium, 2018, 49, 512-515.	0
137	Evaluation of Letter Reproduction System Using Cellular Neural Network and Oxide Semiconductor Synapses by Logic Simulation. , 2018, , .	O
138	Thermoelectric Conversion Devise Using Ga-Sn-O Thin Film Prepared by Mist CVD Method., 2018,,.	0
139	Research and development of Ga-Sn-O thin films for application to neural networks. , 2018, , .	O
140	Biological Stimulation Performance of LTPS-TFTs Artificial Retina by Wireless Power Drive., 2018,,.	0
141	Room Temperature Fabrication of Variable Resistive Memory Using Ga-Sn-O Thin Film. , 2018, , .	O
142	Cross-Point Device using Ta2O5/Ta Layer for Synapse Element in Neural Network. , 2018, , .	0
143	Ga-Sn-O thin film thermoelectric conversion devise fabricated by Mist CVD method., 2019,,.	O
144	50.3: <i>Invited Paper:</i> STO TFT, Memristor, Thermoelectric Device, Neuromorphic System, etc Digest of Technical Papers SID International Symposium, 2021, 52, 337-337.	0

#	Article	IF	CITATIONS
145	Stacked cross-point memory using IGZO thin film for synaptic elements. , 2021, , .		O
146	Ferroelectric thin film for a capacitor-type synapse in neuromorphic systems. , 2021, , .		0
147	GTO thin film thermoelectric conversion device manufactured by RF magnetron sputtering method. , 2021, , .		O
148	8.3: Invited Paper: GTOâ€TFT deposited using Mist VD. Digest of Technical Papers SID International Symposium, 2021, 52, 142-144.	0.3	0
149	Preliminary Evaluation for Multi-domain Spike Coding on Memcapacitive Neuromorphic Circuit. , 2021, , .		0