Marieke Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1813410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
2	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
3	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 2020, 10, 100.	4.8	365
4	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
5	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
6	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
7	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 431-451.	3.6	143
8	Cognitive heterogeneity in adult attention deficit/hyperactivity disorder: A systematic analysis of neuropsychological measurements. European Neuropsychopharmacology, 2015, 25, 2062-2074.	0.7	109
9	Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biological Psychiatry, 2017, 82, 634-641.	1.3	99
10	Genetic influences on hub connectivity of the human connectome. Nature Communications, 2021, 12, 4237.	12.8	92
11	Brain imaging genetics in ADHD and beyond – Mapping pathways from gene to disorder at different levels of complexity. Neuroscience and Biobehavioral Reviews, 2017, 80, 115-155.	6.1	83
12	Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping, 2022, 43, 470-499.	3.6	76
13	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	14.8	75
14	Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 2020, 45, 1617-1626.	5.4	72
15	Genetic Markers of ADHD-Related Variations in Intracranial Volume. American Journal of Psychiatry, 2019, 176, 228-238.	7.2	68
16	Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability. Nature Communications, 2017, 8, 1052.	12.8	63
17	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
18	Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The <scp>ENIGMA</scp> adventure. Human Brain Mapping, 2022, 43, 37-55.	3.6	61

Marieke Klein

#	Article	IF	CITATIONS
19	Case–Control Genome-Wide Association Study of Persistent Attention-Deficit Hyperactivity Disorder Identifies FBXO33 as a Novel Susceptibility Gene for the Disorder. Neuropsychopharmacology, 2015, 40, 915-926.	5.4	59
20	Epistatic interaction of genetic depression risk variants in the human subgenual cingulate cortex during memory encoding. Translational Psychiatry, 2014, 4, e372-e372.	4.8	46
21	Genes To Mental Health (G2MH): A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology. American Journal of Psychiatry, 2022, 179, 189-203.	7.2	29
22	Exome chip analyses in adult attention deficit hyperactivity disorder. Translational Psychiatry, 2016, 6, e923-e923.	4.8	27
23	From Rare Copy Number Variants to Biological Processes in ADHD. American Journal of Psychiatry, 2020, 177, 855-866.	7.2	26
24	Transdiagnostic neuroimaging of reward system phenotypes in ADHD and comorbid disorders. Neuroscience and Biobehavioral Reviews, 2021, 128, 165-181.	6.1	26
25	Motivational salience and genetic variability of dopamine D2 receptor expression interact in the modulation of interference processing. Frontiers in Human Neuroscience, 2013, 7, 250.	2.0	25
26	Genome-Wide DNA Methylation Patterns in Persistent Attention-Deficit/Hyperactivity Disorder and in Association With Impulsive and Callous Traits. Frontiers in Genetics, 2020, 11, 16.	2.3	25
27	Cross-disorder genetic analyses implicate dopaminergic signaling as a biological link between Attention-Deficit/Hyperactivity Disorder and obesity measures. Neuropsychopharmacology, 2020, 45, 1188-1195.	5.4	23
28	Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory. Frontiers in Human Neuroscience, 2014, 8, 260.	2.0	22
29	Valenced action/inhibition learning in humans is modulated by a genetic variant linked to dopamine D2 receptor expression. Frontiers in Systems Neuroscience, 2014, 8, 140.	2.5	22
30	Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Molecular Psychiatry, 2021, 26, 2277-2285.	7.9	22
31	Contribution of Intellectual Disability–Related Genes to ADHD Risk and to Locomotor Activity in <i>Drosophila</i> . American Journal of Psychiatry, 2020, 177, 526-536.	7.2	22
32	DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan. Molecular Psychiatry, 2021, 26, 2148-2162.	7.9	21
33	A case–control genome-wide association study of ADHD discovers a novel association with the tenascin R (TNR) gene. Translational Psychiatry, 2018, 8, 284.	4.8	20
34	Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor. Frontiers in Psychology, 2017, 8, 654.	2.1	19
35	Converging evidence does not support <i>GIT1</i> as an ADHD risk gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 492-507.	1.7	18
36	Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing. Molecular Psychiatry, 2020, 25, 2047-2057.	7.9	17

MARIEKE KLEIN

#	Article	IF	CITATIONS
37	Imaging genetics in neurodevelopmental psychopathology. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 485-537.	1.7	16
38	Aggression based genome-wide, glutamatergic, dopaminergic and neuroendocrine polygenic risk scores predict callous-unemotional traits. Neuropsychopharmacology, 2020, 45, 761-769.	5.4	16
39	Characterizing the heterogeneous course of inattention and hyperactivity-impulsivity from childhood to young adulthood. European Child and Adolescent Psychiatry, 2022, 31, 1-11.	4.7	15
40	DNA methylation associated with persistent ADHD suggests TARBP1 as novel candidate. Neuropharmacology, 2021, 184, 108370.	4.1	14
41	Transcript co-variance with Nestin in two mouse genetic reference populations identifies Lef1 as a novel candidate regulator of neural precursor cell proliferation in the adult hippocampus. Frontiers in Neuroscience, 2014, 8, 418.	2.8	11
42	Genome-wide association study reveals novel genetic locus associated with intra-individual variability in response time. Translational Psychiatry, 2018, 8, 207.	4.8	11
43	Protocol of the Healthy Brain Study: An accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context. PLoS ONE, 2021, 16, e0260952.	2.5	8
44	From man to fly – convergent evidence links <i>FBXO25</i> to ADHD and comorbid psychiatric phenotypes. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 545-555.	5.2	7
45	A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms. Behavior Genetics, 2019, 49, 270-285.	2.1	6
46	Meta-analysis of the DRD5 VNTR in persistent ADHD. European Neuropsychopharmacology, 2016, 26, 1527-1532.	0.7	4
47	Multivariate Genetic Structure of Externalizing Behavior and Structural Brain Development in a Longitudinal Adolescent Twin Sample. International Journal of Molecular Sciences, 2022, 23, 3176.	4.1	2
48	OP0057â€Anti-TNFÎ [°] Therapy Targets PKB/C-AKT Induced Resistance of Effector Cells to Suppression in Juvenile Idiopathic Arthritis. Annals of the Rheumatic Diseases, 2013, 72, A69.1-A69.	0.9	0
49	100. Investigating the Overlap between Common Genetic Factors for ADHD Risk and Brain Volume Measures. Biological Psychiatry, 2017, 81, S42.	1.3	0
50	Attention Deficit Hyperactivity Disorder and Obesity: The Weight of Shared Genetic Risk Factors. European Neuropsychopharmacology, 2019, 29, S759.	0.7	0
51	FROM MAN TO FLY–CONVERGENT EVIDENCE LINKS FBXO25 TO ADHD AND COMORBID PSYCHIATRIC PHENOTYPES. European Neuropsychopharmacology, 2019, 29, S1042-S1043.	0.7	0
52	F2ELUCIDATING THE GENETIC AND BIOLOGICAL FACTORS UNDERLYING THE RELATIONSHIP BETWEEN ADHD AND BMI VARIATION. European Neuropsychopharmacology, 2019, 29, S1110-S1111.	0.7	0
53	Genetic markers for brain plasticity. Alzheimer's and Dementia, 2020, 16, e042812.	0.8	0
54	Editorial: In Search of Mechanisms: Genes, Brains, and Environment in Aggressive Behavior. Frontiers in Psychiatry, 2021, 12, 643747.	2.6	0