
Huijun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18130/publications.pdf Version: 2024-02-01

ΗΠΠΗ ΥΑΝΟ

#	Article	IF	CITATIONS
1	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 9377-9381.	13.8	551
2	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 2760-2764.	13.8	369
3	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 9463-9467.	2.0	327
4	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long ycleâ€Life Batteries. Advanced Materials, 2019, 31, e1900668.	21.0	259
5	A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Longâ€Life Aqueous Zinc–Iodide Batteries. Advanced Materials, 2020, 32, e2004240.	21.0	222
6	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	18.0	195
7	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy, 2021, 6, 653-662.	39.5	175
8	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Longâ€Life Rechargeable Zinc Battery. Advanced Materials, 2021, 33, e2102415.	21.0	164
9	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	13.8	152
10	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule, 2020, 4, 1776-1789.	24.0	146
11	Beyond the concentrated electrolyte: further depleting solvent molecules within a Li ⁺ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy and Environmental Science, 2020, 13, 4122-4131.	30.8	122
12	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 7306-7318.	13.8	113
13	Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective. ACS Energy Letters, 2022, 7, 2515-2530.	17.4	94
14	A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nature Communications, 2022, 13, 1510.	12.8	93
15	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	18.0	92
16	Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 2020, 27, 307-315.	18.0	80
17	Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54, 4132-4135.	4.1	68
18	A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy and Environmental Science, 2020, 13, 1197-1204.	30.8	67

Huijun Yang

#	Article	IF	CITATIONS
19	Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chemical Communications, 2016, 52, 13479-13482.	4.1	66
20	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	21.0	66
21	Restraining Oxygen Release and Suppressing Structure Distortion in Singleâ€Crystal Liâ€Rich Layered Cathode Materials. Advanced Functional Materials, 2022, 32, 2110295.	14.9	62
22	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie, 2019, 131, 2786-2790.	2.0	54
23	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie - International Edition, 2021, 60, 17726-17734.	13.8	50
24	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost Molecular Sieve. Angewandte Chemie - International Edition, 2021, 60, 15572-15581.	13.8	43
25	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
26	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	8.0	38
27	Duplex component additive of tris(trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries. Energy Storage Materials, 2018, 14, 75-81.	18.0	33
28	A Safe Organic Oxygen Battery Built with Liâ€Based Liquid Anode and MOFs Separator. Advanced Energy Materials, 2020, 10, 1903953.	19.5	33
29	Highly safe and stable lithium–metal batteries based on a quasi-solid-state electrolyte. Journal of Materials Chemistry A, 2022, 10, 651-663.	10.3	32
30	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie, 2020, 132, 7374-7386.	2.0	30
31	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
32	AlF ₃ -Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chemical Communications, 2018, 54, 8347-8350.	4.1	28
33	Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries. Energy Storage Materials, 2020, 31, 187-194.	18.0	28
34	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€6ulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	2.0	23
35	Nitrogen-doped carbon coated anatase TiO2 anode material for lithium-ion batteries. Materials Letters, 2013, 109, 195-198.	2.6	20
36	Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte. Chemical Communications, 2016, 52, 14430-14433.	4.1	18

Huijun Yang

#	Article	IF	CITATIONS
37	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	10.3	17
38	Insights into high capacity and ultrastable carbonaceous anodes for potassium-ion storage <i>via</i> a hierarchical heterostructure. Journal of Materials Chemistry A, 2020, 8, 2836-2842.	10.3	15
39	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	10.3	15
40	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie, 2022, 134, .	2.0	15
41	A Safe and Sustainable Lithium″on–Oxygen Battery based on a Lowâ€Cost Dualâ€Carbon Electrodes Architecture. Advanced Materials, 2021, 33, e2100827.	21.0	14
42	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 44, 360-369.	18.0	14
43	A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. National Science Review, 2021, 8, nwaa287.	9.5	12
44	A low-cost and non-corrosive electropolishing strategy for long-life zinc metal anode in rechargeable aqueous battery. Energy Storage Materials, 2022, 46, 223-232.	18.0	12
45	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie, 2021, 133, 17867-17875.	2.0	11
46	Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes. Acta Chimica Sinica, 2021, 79, 139.	1.4	10
47	Halogen conversion-intercalation chemistry promises high energy density Li-ion battery. Science Bulletin, 2019, 64, 1393-1395.	9.0	8
48	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	6
49	Pathways towards Highâ€Performance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, .	4.7	6
50	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost Molecular Sieve. Angewandte Chemie, 2021, 133, 15700-15709.	2.0	2