
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1812287/publications.pdf Version: 2024-02-01

SUK HO CHUNC

#	Article	IF	CITATIONS
1	Flame edge dynamics in counterflow nonpremixed flames of CH4/He versus air at low strain rates: An experimental and numerical study. Combustion and Flame, 2022, 235, 111718.	5.2	4
2	Chemical speciation and soot measurements in laminar counterflow diffusion flames of ethylene and ammonia mixtures. Fuel, 2022, 308, 122003.	6.4	39
3	Effect of the thickness of polyethylene insulation on flame spread over electrical wire with Cu-core under AC electric fields. Combustion and Flame, 2022, 240, 112017.	5.2	6
4	Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor. Fuel, 2022, 323, 124227.	6.4	17
5	Incipient sooting tendency of oxygenated fuels doped in ethylene counterflow diffusion flames. Combustion and Flame, 2022, 244, 112284.	5.2	2
6	Effects of Schmidt number on non-monotonic liftoff height behavior in laminar coflow-jet flames with diluted methane and ethylene. Proceedings of the Combustion Institute, 2021, 38, 1913-1921.	3.9	3
7	Effect of core metal on flame spread and extinction for horizontal electrical wire with applied AC electric fields. Proceedings of the Combustion Institute, 2021, 38, 4747-4756.	3.9	11
8	On the flame structure and stabilization characteristics of autoignited laminar lifted n-heptane jet flames in heated coflow air. Combustion and Flame, 2021, 223, 307-319.	5.2	7
9	On the oscillating flame characteristics in nonpremixed laminar coflow-jets: An experimental and numerical study. Proceedings of the Combustion Institute, 2021, 38, 2049-2056.	3.9	3
10	Characterization of Turbulence in an Optically Accessible Fan-Stirred Spherical Combustion Chamber. Combustion Science and Technology, 2021, 193, 1231-1257.	2.3	7
11	Synthesis and Characterization of Iron-Doped TiO2 Nanoparticles Using Ferrocene from Flame Spray AVDNS is Catalysts, 2021, 11, 438 AVDNS study of ignition characteristics of a lean PRF/air mixture with <mml:math< td=""><td>3.5</td><td>31</td></mml:math<>	3.5	31
12	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:msub><mml:mtext>CH</mml:mtext><mml:mn>2</mml:mn></mml:msub> C and H <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si4.svg"><mml:msub><mml:mrow< td=""><td>) 5.2</td><td>7</td></mml:mrow<></mml:msub></mml:math>) 5.2	7
13	/> <mml:mn>2</mml:mn> O <mml:math xmlns:mml-z"http://www.w3.org/1998/Ma Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame, 2020, 213, 14-25.</mml:math 	5.2	51
14	Effects of non-thermal plasma on the lean blowout limits and CO/NOx emissions in swirl-stabilized turbulent lean-premixed flames of methane/air. Combustion and Flame, 2020, 212, 403-414.	5.2	34
15	Effects of diluents on the lifted flame characteristics in laminar nonpremixed coflow propane jets. Combustion and Flame, 2020, 222, 145-151.	5.2	5
16	Role of dimethyl ether in incipient soot formation in premixed ethylene flames. Combustion and Flame, 2020, 216, 271-279.	5.2	24
17	Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels. Combustion and Flame, 2020, 216, 24-28.	5.2	12
18	Edge flame propagation via parallel electric fields in nonpremixed coflow jets. Proceedings of the Combustion Institute, 2019, 37, 5537-5544.	3.9	14

#	Article	IF	CITATIONS
19	Decreasing liftoff height behavior in diluted laminar lifted methane jet flames. Proceedings of the Combustion Institute, 2019, 37, 2005-2012.	3.9	20
20	Effect of pressure on the characteristics of lifted flames. Proceedings of the Combustion Institute, 2019, 37, 2013-2020.	3.9	14
21	Mechanism on oscillating lifted flames in nonpremixed laminar coflow jets. Proceedings of the Combustion Institute, 2019, 37, 1997-2004.	3.9	11
22	Burning characteristics of candle flames in sub-atmospheric pressures: An experimental study and scaling analysis. Proceedings of the Combustion Institute, 2019, 37, 2065-2072.	3.9	7
23	Ignition characteristics of a temporally evolving n-heptane jet in an iso-octane/air stream under RCCI combustion-relevant conditions. Combustion and Flame, 2019, 208, 299-312.	5.2	21
24	Blowout of non-premixed turbulent jet flames with coflow under microgravity condition. Combustion and Flame, 2019, 210, 315-323.	5.2	16
25	Theoretical Study of PAH Growth by Phenylacetylene Addition. Journal of Physical Chemistry A, 2019, 123, 10323-10332.	2.5	8
26	The influence of chemical composition on ignition delay times of gasoline fractions. Combustion and Flame, 2019, 209, 418-429.	5.2	20
27	Flame spread over twin electrical wires with applied DC electric fields. Combustion and Flame, 2019, 210, 350-359.	5.2	11
28	A numerical study of the pyrolysis effect on autoignited laminar lifted dimethyl ether jet flames in heated coflow air. Combustion and Flame, 2019, 209, 225-238.	5.2	10
29	Effect of AC electric field on flame spread in electrical wire: Variation in polyethylene insulation thickness and di-electrophoresis phenomenon. Combustion and Flame, 2019, 202, 107-118.	5.2	16
30	Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science, 2019, 74, 152-238.	31.2	293
31	On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combustion and Flame, 2019, 202, 228-242.	5.2	79
32	An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Experimental Thermal and Fluid Science, 2019, 100, 259-270.	2.7	35
33	Effect of DC Electric Fields on Flame Spread Over Twin Electrical Wires. , 2019, , .		0
34	A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames. Combustion and Flame, 2018, 192, 71-85.	5.2	37
35	Estimating fuel octane numbers from homogeneous gas-phase ignition delay times. Combustion and Flame, 2018, 188, 307-323.	5.2	32
36	Differential diffusion effect on the stabilization characteristics of autoignited laminar lifted methane/hydrogen jet flames in heated coflow air. Combustion and Flame, 2018, 198, 305-319.	5.2	19

#	Article	IF	CITATIONS
37	Dynamic responses of counterflow nonpremixed flames to AC electric field. Combustion and Flame, 2018, 198, 240-248.	5.2	17
38	Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combustion and Flame, 2018, 197, 304-318.	5.2	47
39	Effect of buoyancy on dynamical responses of coflow diffusion flame under low-frequency alternating current. Combustion Science and Technology, 2018, 190, 1832-1849.	2.3	3
40	Autoignited lifted flames of dimethyl ether in heated coflow air. Combustion and Flame, 2018, 195, 75-83.	5.2	14
41	lgnition delay time sensitivity in ignition quality tester (IQT) and its relation to octane sensitivity. Fuel, 2018, 233, 412-419.	6.4	19
42	Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames. Proceedings of the Combustion Institute, 2017, 36, 1621-1628.	3.9	13
43	Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges. Proceedings of the Combustion Institute, 2017, 36, 4183-4192.	3.9	46
44	Flow instability in laminar jet flames driven by alternating current electric fields. Proceedings of the Combustion Institute, 2017, 36, 4175-4182.	3.9	15
45	Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. Combustion and Flame, 2017, 178, 46-60.	5.2	102
46	A parametric study of AC electric field-induced toroidal vortex formation in laminar nonpremixed coflow flames. Combustion and Flame, 2017, 182, 142-149.	5.2	4
47	On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions. Combustion and Flame, 2017, 183, 309-321.	5.2	56
48	Blow-out of nonpremixed turbulent jet flames at sub-atmospheric pressures. Combustion and Flame, 2017, 176, 358-360.	5.2	11
49	Visualization of ionic wind in laminar jet flames. Combustion and Flame, 2017, 184, 246-248.	5.2	35
50	On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. Fuel, 2017, 207, 373-388.	6.4	40
51	Influence of Ethanol and Exhaust Gas Recirculation on Laminar Burning Behaviors of Fuels for Advanced Combustion Engines (FACE-C) Gasoline and Its Surrogate. Energy & Fuels, 2017, 31, 14104-14115.	5.1	13
52	Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT). Fuel, 2017, 187, 117-127.	6.4	77
53	Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma. Proceedings of the Combustion Institute, 2017, 36, 4145-4153.	3.9	20
54	Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: Chemical aspects. Proceedings of the Combustion Institute, 2017, 36, 3587-3596.	3.9	52

#	Article	IF	CITATIONS
55	Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study. Proceedings of the Combustion Institute, 2017, 36, 3623-3631.	3.9	37
56	Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity. Proceedings of the Combustion Institute, 2017, 36, 3045-3053.	3.9	31
57	Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating . Combustion Science and Technology, 2016, 188, 692-706.	2.3	14
58	Compositional effects on the ignition of FACE gasolines. Combustion and Flame, 2016, 169, 171-193.	5.2	174
59	Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles. Nanotechnology, 2016, 27, 365709.	2.6	6
60	Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers. Fuel, 2016, 185, 589-598.	6.4	16
61	Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures. Combustion and Flame, 2016, 171, 119-132.	5.2	18
62	Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot. Combustion and Flame, 2016, 172, 1-12.	5.2	74
63	DC field response of one-dimensional flames using an ionized layer model. Combustion and Flame, 2016, 163, 317-325.	5.2	35
64	Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields. Combustion and Flame, 2016, 168, 138-146.	5.2	54
65	Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution. Combustion Science and Technology, 2016, 188, 805-817.	2.3	48
66	Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner. Combustion Science and Technology, 2016, 188, 623-636.	2.3	2
67	A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons. Combustion and Flame, 2016, 163, 427-436.	5.2	48
68	Stabilization and structure of n-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF. Experimental Thermal and Fluid Science, 2016, 73, 18-26.	2.7	11
69	Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combustion and Flame, 2016, 165, 433-444.	5.2	51
70	Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	14
71	Effects of various densities and velocities on gaseous hydrocarbon fuel on near nozzle flow field under different laminar coflow diffusion flames. Journal of Advanced Marine Engineering and Technology, 2016, 40, 102-106.	0.4	1
72	A Computational Study of Internal Flows in a Heated Water-Oil Emulsion Droplet. , 2015, , .		0

#	Article	IF	CITATIONS
73	Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames. , 2015, , .		0
74	Simulation of Non-Autoignited and Autoignited Laminar Non-Premixed Jet Flames of Syngas in Heated Coflow Air. Combustion Science and Technology, 2015, 187, 132-147.	2.3	10
75	High Pressure and Split Injection Strategies for Fuel Efficiency and Emissions in DI Diesel Engine. , 2015, , .		6
76	Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements. Combustion Science and Technology, 2015, 187, 1408-1424.	2.3	7
77	Curved wall-jet burner for synthesizing titania and silica nanoparticles. Proceedings of the Combustion Institute, 2015, 35, 2267-2274.	3.9	9
78	AC electric field induced vortex in laminar coflow diffusion flames. Proceedings of the Combustion Institute, 2015, 35, 3513-3520.	3.9	45
79	Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combustion and Flame, 2015, 162, 586-596.	5.2	117
80	Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON. Combustion and Flame, 2015, 162, 2311-2321.	5.2	120
81	Behaviors of tribrachial edge flames and their interactions in a triple-port burner. Combustion and Flame, 2015, 162, 1653-1659.	5.2	8
82	Reaction Mechanism for the Formation of Nitrogen Oxides (NO _x) During Coke Oxidation in Fluidized Catalytic Cracking Units. Combustion Science and Technology, 2015, 187, 1683-1704.	2.3	13
83	A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources. Physics of Fluids, 2015, 27, 053302.	4.0	7
84	Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number. Combustion and Flame, 2015, 162, 1614-1621.	5.2	22
85	Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping. Combustion and Flame, 2015, 162, 1167-1175.	5.2	41
86	A comprehensive experimental and modeling study of 2-methylbutanol combustion. Combustion and Flame, 2015, 162, 2166-2176.	5.2	30
87	Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion. Combustion and Flame, 2015, 162, 4566-4585.	5.2	63
88	Combustion Characteristics of C ₅ Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation. Energy & Fuels, 2015, 29, 7584-7594.	5.1	19
89	Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso -octane in heated coflow air. Fuel, 2015, 162, 171-178.	6.4	16
90	A fundamental investigation into the relationship between lubricant composition and fuel ignition quality. Fuel, 2015, 160, 605-613.	6.4	41

#	Article	IF	CITATIONS
91	Reaction Mechanism form-Xylene Oxidation in the Claus Process by Sulfur Dioxide. Journal of Physical Chemistry A, 2015, 119, 9889-9900.	2.5	13
92	Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures. Combustion and Flame, 2015, 162, 3562-3568.	5.2	33
93	Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames. Proceedings of the Combustion Institute, 2015, 35, 873-880.	3.9	34
94	Laser-induced multi-point ignition for enabling high-performance engines. , 2015, , .		1
95	Quantification of extinction mechanism in counterflow premixed flames. Journal of Mechanical Science and Technology, 2014, 28, 3863-3871.	1.5	4
96	Response to Acoustic Forcing of Laminar Coflow Jet Diffusion Flames. Combustion Science and Technology, 2014, 186, 409-420.	2.3	11
97	Soot Reduction Under DC Electric Fields in Counterflow Non-Premixed Laminar Ethylene Flames. Combustion Science and Technology, 2014, 186, 644-656.	2.3	37
98	Thermal fragmentation and deactivation of combustion-generated soot particles. Combustion and Flame, 2014, 161, 2446-2457.	5.2	51
99	Toluene Destruction in the Claus Process by Sulfur Dioxide: A Reaction Kinetics Study. Industrial & Engineering Chemistry Research, 2014, 53, 16293-16308.	3.7	22
100	Benzene Destruction in Claus Process by Sulfur Dioxide: A Reaction Kinetics Study. Industrial & Engineering Chemistry Research, 2014, 53, 10608-10617.	3.7	17
101	PAH Growth Initiated by Propargyl Addition: Mechanism Development and Computational Kinetics. Journal of Physical Chemistry A, 2014, 118, 2865-2885.	2.5	69
102	Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index. Combustion and Flame, 2014, 161, 1224-1234.	5.2	54
103	Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature. Combustion and Flame, 2014, 161, 2878-2889.	5.2	36
104	Modeling of Fuel Vapor Jet Eruption Induced by Local Droplet Heating. , 2014, , .		1
105	Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields. Journal of the Korean Society of Combustion, 2014, 19, 1-7.	0.2	1
106	Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index. Proceedings of the Combustion Institute, 2013, 34, 1803-1809.	3.9	47
107	Investigating the growth mechanism and optical properties of carbon-coated titanium dioxide nanoparticles. Materials Letters, 2013, 108, 134-138.	2.6	9
108	Autoignited and non-autoignited lifted flames of pre-vaporized n-heptane in coflow jets at elevated temperatures. Combustion and Flame, 2013, 160, 1717-1724.	5.2	22

#	Article	IF	CITATIONS
109	A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame, 2013, 160, 1667-1676.	5.2	254
110	Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles. Combustion and Flame, 2013, 160, 1848-1856.	5.2	31
111	Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study. Combustion and Flame, 2013, 160, 1812-1826.	5.2	106
112	Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities. Combustion and Flame, 2013, 160, 2038-2047.	5.2	103
113	An experimental Study on the Effects of High-Pressure and Multiple Injection Strategies on DI Diesel Engine Emissions. , 2013, , .		6
114	Reaction mechanism for the free-edge oxidation of soot by O2. Combustion and Flame, 2012, 159, 3423-3436.	5.2	93
115	A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combustion and Flame, 2012, 159, 500-515.	5.2	182
116	Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect. Combustion and Flame, 2012, 159, 1151-1159.	5.2	76
117	Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air. Combustion and Flame, 2012, 159, 1481-1488.	5.2	34
118	A numerical study on extinction and NOx formation in nonpremixed flames with syngas fuel. Journal of Mechanical Science and Technology, 2011, 25, 2943-2949.	1.5	10
119	Stress-adapted extremophiles provide energy without interference with food production. Food Security, 2011, 3, 93-105.	5.3	36
120	Automotive airbag inflator analysis using the measured properties of modern propellants. Fuel, 2011, 90, 1395-1401.	6.4	20
121	Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow. Combustion and Flame, 2010, 157, 17-24.	5.2	82
122	Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature. Combustion and Flame, 2010, 157, 2348-2356.	5.2	51
123	Numerical evaluation of NOx mechanisms in methane-air counterflow premixed flames. Journal of Mechanical Science and Technology, 2009, 23, 659-666.	1.5	16
124	Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion. Journal of Mechanical Science and Technology, 2009, 23, 650-658.	1.5	49
125	Numerical simulation on soot deposition process in laminar ethylene diffusion flames under a microgravity condition. Journal of Mechanical Science and Technology, 2009, 23, 707-716.	1.5	3
126	Numerical study on no emission with flue gas dilution in air and fuel sides. Journal of Mechanical Science and Technology, 2005, 19, 1358-1365.	1.5	7

#	Article	IF	CITATIONS
127	Effect of electric fields on the liftoff of nonpremixed turbulent jet flames. IEEE Transactions on Plasma Science, 2005, 33, 1703-1709.	1.3	56
128	Characteristics of NOx emission with flue gas dilution in air and fuel sides. Journal of Mechanical Science and Technology, 2004, 18, 2303-2309.	0.4	13
129	Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels. Journal of Mechanical Science and Technology, 2004, 18, 838-846.	0.4	12
130	Characteristics of propagating tribrachial flames in counterflow. Journal of Mechanical Science and Technology, 2002, 16, 1710-1718.	0.4	14
131	Nonlinear acoustic-pressure responses of oxygen droplet flames burning in gaseous hydrogen. Journal of Mechanical Science and Technology, 2001, 15, 510-521.	0.4	6
132	AN EXPERIMENT ON FLOW DISTRIBUTION AND MIXING IN IMPINGING JET SPRAYS. Atomization and Sprays, 1999, 9, 193-213.	0.8	5
133	EFFECT OF STRETCH AND PREFERENTIAL DIFFUSION IN SPHERICALLY PROPAGATING H2/AIR PREMIXED FLAMES. , 1998, , .		0
134	TOMOGRAPHIC RECONSTRUCTION OF ASYMMETRIC SPRAYS FROM A TWIN-HOLE AIR SHROUD INJECTOR. Atomization and Sprays, 1997, 7, 183-197.	0.8	2
135	CORRECTION OF PIV IMAGE BIASING USING TWO CO-ROTATING MIRRORS. Journal of Flow Visualization and Image Processing, 1996, 3, 265-277.	0.5	0
136	Effect of gas-phase and surface radiation on the structure and extinction of diffusion flames stabilized on a condensed fuel. International Journal of Heat and Mass Transfer, 1994, 37, 2893-2900.	4.8	12
137	Flame stabilization in an axisymmetric curved-wall jet burner with variation in burner tip configurations. , 0, , .		0
138	Ignition Delay and Soot Oxidative Reactivity of MTBE Blended Diesel Fuel. , 0, , .		2
139	Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel, n-Heptane, and iso-Octane Fuels under Low Temperature Conditions. SAE International Journal of Fuels and Lubricants, 0, 8, 537-548.	0.2	32
140	Effects of DC Electric Fields on Flickering and Acoustic Oscillations of an M-shape Premixed Flame. Flow, Turbulence and Combustion, 0, , 1.	2.6	2