Célia Maria de Almeida Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181167/publications.pdf

Version: 2024-02-01

70 papers 1,689 citations

304743 22 h-index 315739 38 g-index

70 all docs

70 docs citations

70 times ranked

1508 citing authors

#	Article	IF	Citations
1	Glyceraldehyde-3-Phosphate Dehydrogenase of Paracoccidioides brasiliensis Is a Cell Surface Protein Involved in Fungal Adhesion to Extracellular Matrix Proteins and Interaction with Cells. Infection and Immunity, 2006, 74, 382-389.	2.2	177
2	<i>Paracoccidioides brasiliensis</i> Enolase Is a Surface Protein That Binds Plasminogen and Mediates Interaction of Yeast Forms with Host Cells. Infection and Immunity, 2010, 78, 4040-4050.	2.2	90
3	Analysis of the <i>Paracoccidioides brasiliensis </i> triosephosphate isomerase suggests the potential for adhesin function. FEMS Yeast Research, 2007, 7, 1381-1388.	2.3	85
4	Macrophage Interaction with Paracoccidioides brasiliensis Yeast Cells Modulates Fungal Metabolism and Generates a Response to Oxidative Stress. PLoS ONE, 2015, 10, e0137619.	2.5	79
5	Analysis of the Secretomes of Paracoccidioides Mycelia and Yeast Cells. PLoS ONE, 2012, 7, e52470.	2.5	72
6	Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated. PLoS Neglected Tropical Diseases, 2014, 8, e2856.	3.0	66
7	Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides. PLoS Neglected Tropical Diseases, 2014, 8, e2855.	3.0	65
8	Paracoccidioides brasiliensispresents metabolic reprogramming and secretes a serine proteinase during murine infection. Virulence, 2017, 8, 1417-1434.	4.4	58
9	A proteomic view of the response of Paracoccidioides yeast cells to zinc deprivation. Fungal Biology, 2013, 117, 399-410.	2.5	52
10	Identification of membrane proteome of <i>Paracoccidioides lutzii</i> and its regulation by zinc. Future Science OA, 2017, 3, FSO232.	1.9	51
11	Comparative proteomics in the genus Paracoccidioides. Fungal Genetics and Biology, 2013, 60, 87-100.	2.1	48
12	The Homeostasis of Iron, Copper, and Zinc in Paracoccidioides Brasiliensis, Cryptococcus Neoformans Var. Grubii, and Cryptococcus Gattii: A Comparative Analysis. Frontiers in Microbiology, 2011, 2, 49.	3.5	47
13	A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. Chemosphere, 2017, 168, 933-943.	8.2	46
14	Hydroxamate Production as a High Affinity Iron Acquisition Mechanism in Paracoccidioides Spp. PLoS ONE, 2014, 9, e105805.	2.5	44
15	Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein. BMC Microbiology, 2015, 15, 53.	3.3	39
16	Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1304-1314.	2.3	38
17	Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Neglected Tropical Diseases, 2015, 9, e0004282.	3.0	32
18	Interactome of Glyceraldehyde-3-Phosphate Dehydrogenase Points to the Existence of Metabolons in Paracoccidioides lutzii. Frontiers in Microbiology, 2019, 10, 1537.	3.5	26

#	Article	lF	Citations
19	Immunoproteomic Approach of Extracellular Antigens From Paracoccidioides Species Reveals Exclusive B-Cell Epitopes. Frontiers in Microbiology, 2019, 10, 2968.	3.5	25
20	Alkaloids as Inhibitors of Malate Synthase from Paracoccidioides spp.: Receptor-Ligand Interaction-Based Virtual Screening and Molecular Docking Studies, Antifungal Activity, and the Adhesion Process. Antimicrobial Agents and Chemotherapy, 2015, 59, 5581-5594.	3.2	24
21	Proteomic Analysis of Paracoccidioides brasiliensis During Infection of Alveolar Macrophages Primed or Not by Interferon-Gamma. Frontiers in Microbiology, 2019, 10, 96.	3.5	24
22	Paracoccidioides spp. ferrous and ferric iron assimilation pathways. Frontiers in Microbiology, 2015, 6, 821.	3 . 5	23
23	Transcriptome Profile of the Response of Paracoccidioides spp. to a Camphene Thiosemicarbazide Derivative. PLoS ONE, 2015, 10, e0130703.	2.5	23
24	Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora. BMC Microbiology, 2013, 13, 227.	3.3	22
25	Inhibition of Paracoccidioides lutzii Pb01 Isocitrate Lyase by the Natural Compound Argentilactone and Its Semi-Synthetic Derivatives. PLoS ONE, 2014, 9, e94832.	2.5	22
26	Molecular characterization of siderophore biosynthesis in Paracoccidioides brasiliensis. IMA Fungus, 2020, 11, 11.	3.8	21
27	Cardioprotective effects of diminazene aceturate in pressure-overloaded rat hearts. Life Sciences, 2016, 155, 63-69.	4.3	20
28	Comparative transcriptome analysis of Paracoccidioides brasiliensis during inÂvitro adhesion to type I collagen and fibronectin: identification of potential adhesins. Research in Microbiology, 2012, 163, 182-191.	2.1	19
29	Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp PLoS Neglected Tropical Diseases, 2016, 10, e0004309.	3.0	19
30	Metabolic Peculiarities of Paracoccidioides brasiliensis Dimorphism as Demonstrated by iTRAQ Labeling Proteomics. Frontiers in Microbiology, 2019, 10, 555.	3 . 5	19
31	Metal Acquisition and Homeostasis in Fungi. Current Fungal Infection Reports, 2012, 6, 257-266.	2.6	18
32	Propionate metabolism in a human pathogenic fungus: proteomic and biochemical analyses. IMA Fungus, 2020, 11, 9.	3.8	18
33	Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics. Fungal Genetics and Biology, 2016, 95, 13-23.	2.1	16
34	Antifungal activity of CopaÃba resin oil in solution and nanoemulsion against Paracoccidioides spp Brazilian Journal of Microbiology, 2020, 51, 125-134.	2.0	15
35	Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going?. Journal of Fungi (Basel, Switzerland), 2020, 6, 300.	3 . 5	15
36	Zinc at the Host–Fungus Interface: How to Uptake the Metal?. Journal of Fungi (Basel, Switzerland), 2020, 6, 305.	3 . 5	14

#	Article	IF	Citations
37	Chemoproteomic identification of molecular targets of antifungal prototypes, thiosemicarbazide and a camphene derivative of thiosemicarbazide, in Paracoccidioides brasiliensis. PLoS ONE, 2018, 13, e0201948.	2.5	12
38	Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes and Infection, 2019, 21, 401-411.	1.9	12
39	Immunoproteomics Reveals Pathogen's Antigens Involved in Homo sapiens–Histoplasma capsulatum Interaction and Specific Linear B-Cell Epitopes in Histoplasmosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 591121.	3.9	12
40	Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes and Infection, 2021, 23, 104762.	1.9	12
41	Characterization of the Paracoccidioides beta-1,3-glucanosyltransferase family. FEMS Yeast Research, 2012, 12, 685-702.	2.3	11
42	Transcriptional profile of Paracoccidioides spp. in response to itraconazole. BMC Genomics, 2014, 15, 254.	2.8	11
43	Drug Repurposing for Paracoccidioidomycosis Through a Computational Chemogenomics Framework. Frontiers in Microbiology, 2019, 10, 1301.	3.5	11
44	Argentilactone Molecular Targets in Paracoccidioides brasiliensis Identified by Chemoproteomics. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	10
45	Metabolic Adaptation of Paracoccidioides brasiliensis in Response to in vitro Copper Deprivation. Frontiers in Microbiology, 2020, 11, 1834.	3.5	10
46	Transcriptional profile of the human pathogenic fungus Paracoccidioides lutzii in response to sulfamethoxazole. Medical Mycology, 2015, 53, 477-492.	0.7	9
47	The influence of pH on Staphylococcus saprophyticus iron metabolism and the production of siderophores. Microbes and Infection, 2019, 21, 456-463.	1.9	8
48	Characterization of a heme-protein responsive to hypoxia in Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2020, 144, 103446.	2.1	8
49	In vitro and in silico analysis reveals antifungal activity and potential targets of curcumin on Paracoccidioides spp Brazilian Journal of Microbiology, 2021, 52, 1897-1911.	2.0	8
50	Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Current Pharmaceutical Design, 2020, 26, 1509-1520.	1.9	8
51	A structure-based approach for the discovery of inhibitors against methylcitrate synthase of <i>Paracoccidioides lutzii </i> Journal of Biomolecular Structure and Dynamics, 2022, 40, 9361-9373.	3.5	7
52	The exoproteome profiles of three Staphylococcus saprophyticus strains reveal diversity in protein secretion contents. Microbiological Research, 2018, 216, 85-96.	5.3	6
53	Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. International Journal of Molecular Sciences, 2019, 20, 3904.	4.1	6
54	In silico characterization of microRNAs-like sequences in the genome of Paracoccidioides brasiliensis. Genetics and Molecular Biology, 2019, 42, 95-107.	1.3	6

#	Article	IF	Citations
55	Insights Into Histoplasma capsulatum Behavior on Zinc Deprivation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 573097.	3.9	6
56	Copper overload in Paracoccidioides lutzii results in the accumulation of ergosterol and melanin. Microbiological Research, 2020, 239, 126524.	5.3	6
57	Staphylococcus saprophyticus Proteomic Analyses Elucidate Differences in the Protein Repertories among Clinical Strains Related to Virulence and Persistence. Pathogens, 2020, 9, 69.	2.8	6
58	Interacting with Hemoglobin: Paracoccidioides spp. Recruits hsp30 on Its Cell Surface for Enhanced Ability to Use This Iron Source. Journal of Fungi (Basel, Switzerland), 2021, 7, 21.	3.5	5
59	Beyond Melanin: Proteomics Reveals Virulence-Related Proteins in Paracoccidioides brasiliensis and Paracoccidioides lutzii Yeast Cells Grown in the Presence of L-Dihydroxyphenylalanine. Journal of Fungi (Basel, Switzerland), 2020, 6, 328.	3.5	4
60	Proteome characterization of Paracoccidioides lutzii conidia by using nanoUPLC-MSE. Fungal Biology, 2020, 124, 766-780.	2.5	4
61	Bioluminescence imaging in Paracoccidioides spp.: a tool to monitor the infectious processes. Microbes and Infection, 2022, 24, 104975.	1.9	4
62	Validation of conventional PCR-like alternative to SARS-CoV-2 detection with target nucleocapsid protein gene in naso-oropharyngeal samples. PLoS ONE, 2021, 16, e0257350.	2.5	3
63	Interaction of Isocitrate Lyase with Proteins Involved in the Energetic Metabolism in Paracoccidioides lutzii. Journal of Fungi (Basel, Switzerland), 2020, 6, 309.	3.5	2
64	<i>In silico</i> identification of glycosylphosphatidylinositol-anchored proteins in <i>Paracoccidioides</i> spp Future Microbiology, 2021, 16, 589-606.	2.0	2
65	Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens, 2022, 11, 569.	2.8	2
66	Iron Deprivation Modulates the Exoproteome in Paracoccidioides brasiliensis. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	2
67	The "Little Iron Waltz― The Ternary Response of Paracoccidioides spp. to Iron Deprivation. Journal of Fungi (Basel, Switzerland), 2020, 6, 221.	3.5	1
68	MiRNAs regulate iron homeostasis in Paracoccidioides brasiliensis. Microbes and Infection, 2021, 23, 104772.	1.9	1
69	An efficient Agrobacterium tumefaciens-mediated transformation method for Simplicillium subtropicum (Hypocreales: Cordycipitaceae). Genetics and Molecular Biology, 2021, 44, e20210073.	1.3	1
70	<i>Paracoccidioides brasiliensis</i> plasma membrane characterization by EPR spectroscopy and interactions with amphotericin B, miltefosine and nerolidol. Journal of Biomolecular Structure and Dynamics, 0, , 1-11.	3.5	1