Stefan Engelhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181112/publications.pdf Version: 2024-02-01

STEEAN ENCELHARDT

#	Article	IF	CITATIONS
1	The long non-coding RNA NRON promotes the development of cardiac hypertrophy in the murine heart. Molecular Therapy, 2022, 30, 1265-1274.	8.2	12
2	MicroRNA-365 regulates human cardiac action potential duration. Nature Communications, 2022, 13, 220.	12.8	15
3	Uncovering the molecular identity of cardiosphere-derived cells (CDCs) by single-cell RNA sequencing. Basic Research in Cardiology, 2022, 117, 11.	5.9	7
4	Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS ONE, 2022, 17, e0258924.	2.5	4
5	High precision-cut liver slice model to study cell-autonomous anti-viral defense of hepatocytes within their microenvironment. JHEP Reports, 2022, 4, 100465.	4.9	1
6	CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nature Protocols, 2022, 17, 1142-1188.	12.0	13
7	Generation of heterozygous (MRli003-A-5) and homozygous (MRli003-A-6) voltage-sensing knock-in human iPSC lines by CRISPR/Cas9 editing of the AAVS1 locus. Stem Cell Research, 2022, 61, 102785.	0.7	2
8	MicroRNAs as therapeutic targets in cardiovascular disease. Journal of Clinical Investigation, 2022, 132, .	8.2	50
9	Renal AAV2-Mediated Overexpression of Long Non-Coding RNA H19 Attenuates Ischemic Acute Kidney Injury Through Sponging of microRNA-30a-5p. Journal of the American Society of Nephrology: JASN, 2021, 32, 323-341.	6.1	40
10	Completion of neuronal remodeling prompts myelination along developing motor axon branches. Journal of Cell Biology, 2021, 220, .	5.2	7
11	MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 2021, 143, 1513-1525.	1.6	67
12	Titin Circular RNAs Create a Back-Splice Motif Essential for SRSF10 Splicing. Circulation, 2021, 143, 1502-1512.	1.6	18
13	Glycosylation-dependent cleavage of the human β1-adrenoceptor. Journal of Molecular and Cellular Cardiology, 2021, 154, 154-155.	1.9	0
14	AntimiR-132 Attenuates Myocardial Hypertrophy in an Animal Model of Percutaneous Aortic Constriction. Journal of the American College of Cardiology, 2021, 77, 2923-2935.	2.8	41
15	DCK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Research in Cardiology, 2021, 116, 2.	5.9	5
16	Targeting muscle-enriched long non-coding RNA <i>H19</i> reverses pathological cardiac hypertrophy. European Heart Journal, 2020, 41, 3462-3474.	2.2	81
17	ROP INTERACTIVE PARTNER b Interacts with RACB and Supports Fungal Penetration into Barley Epidermal Cells. Plant Physiology, 2020, 184, 823-836.	4.8	11
18	Regulation and Functions of ROP GTPases in Plant–Microbe Interactions. Cells, 2020, 9, 2016.	4.1	13

#	Article	IF	CITATIONS
19	Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications, 2020, 11, 4549.	12.8	54
20	Metavinculin modulates force transduction in cell adhesion sites. Nature Communications, 2020, 11, 6403.	12.8	21
21	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	3.8	39
22	Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nature Communications, 2020, 11, 2039.	12.8	63
23	Single-cell cardiovascular research. Cardiovascular Research, 2020, 116, 1399-1401.	3.8	О
24	AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2020, 75, 1788-1800.	2.8	82
25	Genetic ablation of Cullin-RING E3 ubiquitin ligase 7 restrains pressure overload-induced myocardial fibrosis. PLoS ONE, 2020, 15, e0244096.	2.5	4
26	Title is missing!. , 2020, 15, e0244096.		0
27	Title is missing!. , 2020, 15, e0244096.		О
28	Title is missing!. , 2020, 15, e0244096.		0
29	Title is missing!. , 2020, 15, e0244096.		0
30	Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biology Plus, 2019, 1, 100005.	3.5	55
31	Correlation of online assessment parameters with summative exam performance in undergraduate medical education of pharmacology: a prospective cohort study. BMC Medical Education, 2019, 19, 412.	2.4	14
32	miR-212/132 Cluster Modulation Prevents Doxorubicin-Mediated Atrophy and Cardiotoxicity. Molecular Therapy, 2019, 27, 17-28.	8.2	38
33	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	4.8	66
34	H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation, 2018, 138, 1551-1568.	1.6	169
35	Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovascular Research, 2018, 114, 291-299.	3.8	50
36	Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. European Heart Journal, 2018, 39, 2704-2716.	2.2	300

#	Article	IF	CITATIONS
37	Nuclear calcineurin is a sensor for detecting Ca2+ release from the nuclear envelope via IP3R. Journal of Molecular Medicine, 2018, 96, 1239-1249.	3.9	16
38	Good Riddance? Breaking Disease Susceptibility in the Era of New Breeding Technologies. Agronomy, 2018, 8, 114.	3.0	39
39	Circular <scp>RNAs</scp> in heart failure. European Journal of Heart Failure, 2017, 19, 701-709.	7.1	168
40	Gαi is required for carvedilol-induced β1 adrenergic receptor β-arrestin biased signaling. Nature Communications, 2017, 8, 1706.	12.8	83
41	Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nature Communications, 2017, 8, 1614.	12.8	172
42	Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation. Nucleic Acids Research, 2017, 45, 10218-10228.	14.5	19
43	Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. Journal of Clinical Investigation, 2017, 127, 4285-4296.	8.2	31
44	Two serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment. PLoS ONE, 2017, 12, e0176450.	2.5	5
45	Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis. Journal of the American College of Cardiology, 2016, 67, 2018-2028.	2.8	186
46	Characterization of circular RNAs in human, mouse and rat hearts. Journal of Molecular and Cellular Cardiology, 2016, 98, 103-107.	1.9	274
47	Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart. Molecular Therapy, 2016, 24, 1939-1948.	8.2	51
48	Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium. Journal of Molecular and Cellular Cardiology, 2016, 99, 57-64.	1.9	32
49	Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination. Neuron, 2016, 92, 845-856.	8.1	89
50	Long noncoding RNA <i>Chast</i> promotes cardiac remodeling. Science Translational Medicine, 2016, 8, 326ra22.	12.4	321
51	Use of Learning Media by Undergraduate Medical Students in Pharmacology: A Prospective Cohort Study. PLoS ONE, 2015, 10, e0122624.	2.5	37
52	Intercellular miRNA Traffic. Circulation Research, 2015, 116, 1726-1728.	4.5	6
53	MicroRNA Augmentation of Bone Marrow–Derived Cell Therapy â^—. Journal of the American College of Cardiology, 2015, 66, 2227-2229.	2.8	3
54	Interhelical Interaction and Receptor Phosphorylation Regulate the Activation Kinetics of Different Human β1-Adrenoceptor Variants. Journal of Biological Chemistry, 2015, 290, 1760-1769.	3.4	10

#	Article	IF	CITATIONS
55	MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Experimental Hematology, 2015, 43, 858-868.e7.	0.4	28
56	Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Research, 2015, 43, 6450-6458.	14.5	278
57	Lack of Gα _{i2} leads to dilative cardiomyopathy and increased mortality in β ₁ -adrenoceptor overexpressing mice. Cardiovascular Research, 2015, 108, 348-356.	3.8	9
58	The Hypersensitive Response in PAMP- and Effector-Triggered Immune Responses. , 2015, , 235-268.		4
59	Accuracy and Completeness of Drug Information in Wikipedia: A Comparison with Standard Textbooks of Pharmacology. PLoS ONE, 2014, 9, e106930.	2.5	63
60	Detection of the Virulent Form of AVR3a from Phytophthora infestans following Artificial Evolution of Potato Resistance Gene R3a. PLoS ONE, 2014, 9, e110158.	2.5	45
61	Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. Journal of Clinical Investigation, 2014, 124, 2136-2146.	8.2	803
62	Inhibition of Cullin-RING E3 ubiquitin ligase 7 by simian virus 40 large T antigen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3371-3376.	7.1	16
63	FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Research in Cardiology, 2014, 109, 451.	5.9	58
64	Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovascular Research, 2014, 104, 15-23.	3.8	68
65	Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling. Cellular Signalling, 2014, 26, 233-239.	3.6	31
66	Polymorphic Variants of Adrenoceptors: Pharmacology, Physiology, and Role in Disease. Pharmacological Reviews, 2014, 66, 598-637.	16.0	98
67	Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation. Journal of Clinical Investigation, 2014, 124, 5385-5397.	8.2	70
68	In Vivo Protein–Protein Interaction Studies with BiFC: Conditions, Cautions, and Caveats. Methods in Molecular Biology, 2014, 1127, 81-90.	0.9	10
69	OnlineTED.coma novel web-based audience response system for higher education. A pilot study to evaluate user acceptance. GMS Zeitschrift Für Medizinische Ausbildung, 2014, 31, Doc5.	1.2	2
70	MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors. Circulation, 2013, 127, 2097-2106.	1.6	203
71	Relocalization of Late Blight Resistance Protein R3a to Endosomal Compartments Is Associated with Effector Recognition and Required for the Immune Response. Plant Cell, 2013, 24, 5142-5158.	6.6	77
72	Coinciding functions for miR-145 in vascular smooth muscle and cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 2013, 65, 105-107.	1.9	6

#	Article	IF	CITATIONS
73	Pharmacases.de – A student-centered e-learning project of clinical pharmacology. Medical Teacher, 2013, 35, 251-253.	1.8	8
74	Dynamics of Gαi1 interaction with typeÂ5 adenylate cyclase reveal the molecular basis for high sensitivity of Gi-mediated inhibition of cAMP production. Biochemical Journal, 2013, 454, 515-523.	3.7	17
75	MiR-223 is dispensable for platelet production and function in mice. Thrombosis and Haemostasis, 2013, 110, 1207-1214.	3.4	31
76	The human transcriptome is enriched for miRNA-binding sites located in cooperativity-permitting distance. RNA Biology, 2013, 10, 1125-1135.	3.1	38
77	microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription. PLoS ONE, 2013, 8, e75882.	2.5	72
78	Internet discussion forums as part of a student-centred teaching concept of pharmacology. GMS Zeitschrift Für Medizinische Ausbildung, 2013, 30, Doc2.	1.2	1
79	The Bispecific SDF1-GPVI Fusion Protein Preserves Myocardial Function After Transient Ischemia in Mice. Circulation, 2012, 125, 685-696.	1.6	73
80	Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB Journal, 2012, 26, 1009-1017.	0.5	61
81	A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 13-20.	1.9	104
82	Small RNA Biomarkers Come of Age. Journal of the American College of Cardiology, 2012, 60, 300-303.	2.8	32
83	The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nature Communications, 2012, 3, 1078.	12.8	518
84	A Polymorphism-Specific "Memory―Mechanism in the β ₂ -Adrenergic Receptor. Science Signaling, 2011, 4, ra53.	3.6	22
85	Functional mapping of harpin HrpZ of <i>Pseudomonas syringae</i> reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology, 2011, 12, 151-166.	4.2	53
86	MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation, 2011, 124, 720-730.	1.6	358
87	Disrupting the EMMPRIN (CD147)–Cyclophilin A Interaction Reduces Infarct Size and Preserves Systolic Function After Myocardial Ischemia and Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1377-1386.	2.4	109
88	Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophy. Circulation, 2011, 124, 796-805.	1.6	144
89	Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. Journal of Clinical Investigation, 2011, 121, 461-462.	8.2	101
90	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	7.1	412

#	Article	IF	CITATIONS
91	Subcellular Mechanisms of Early Impaired Calcium Homeostasis with Chronic Beta1-Adrenergic Stimulation in Mice. Biophysical Journal, 2010, 98, 296a.	0.5	0
92	Minireview: GPCR and G Proteins: Drug Efficacy and Activation in Live Cells. Molecular Endocrinology, 2009, 23, 590-599.	3.7	73
93	Critical Role of Transcription Factor Cyclic AMP Response Element Modulator in β 1 -Adrenoceptor–Mediated Cardiac Dysfunction. Circulation, 2009, 119, 79-88.	1.6	38
94	Separable roles of the <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> accessory protein HrpZ1 in ionâ€conducting pore formation and activation of plant immunity. Plant Journal, 2009, 57, 706-717.	5.7	52
95	Analysis of receptor oligomerization by FRAP microscopy. Nature Methods, 2009, 6, 225-230.	19.0	187
96	Polymorphisms determine Î ² -adrenoceptor conformation: implications for cardiovascular disease and therapy. Trends in Pharmacological Sciences, 2009, 30, 188-193.	8.7	8
97	Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: A role for ER stress?. Journal of Molecular and Cellular Cardiology, 2009, 46, 225-233.	1.9	33
98	MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456, 980-984.	27.8	2,111
99	A Secretion Trap Screen in Yeast Identifies Protease Inhibitor 16 as a Novel Antihypertrophic Protein Secreted From the Heart. Circulation, 2007, 116, 1768-1775.	1.6	53
100	Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell, 2007, 18, 3721-3744.	6.6	314
101	G Proteins. Circulation Research, 2007, 100, 1109-1111.	4.5	15
102	Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. Journal of Clinical Investigation, 2007, 117, 229-235.	8.2	126
103	A Role for Caspase-1 in Heart Failure. Circulation Research, 2007, 100, 645-653.	4.5	98
104	Alternative signaling: cardiomyocyte β1-adrenergic receptors signal through EGFRs. Journal of Clinical Investigation, 2007, 117, 2396-2398.	8.2	17
105	Role of PDE3 and PDE4 for β-adrenergic control of cAMP and ICa,L in adult rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2007, 42, S49.	1.9	0
106	Paradoxical resistance to ischaemic injury in hearts of NHE1-transgenic mice. Journal of Molecular and Cellular Cardiology, 2007, 42, S196.	1.9	0
107	MicroRNAs in the Human Heart. Circulation, 2007, 116, 258-267.	1.6	852
108	Activation of AP-1 Contributes to the β-Adrenoceptor-Mediated Myocardial Induction of Interleukin-6. Molecular Medicine, 2007, 13, 605-614.	4.4	22

#	Article	IF	CITATIONS
109	Interstitial remodeling in β1-adrenergic receptor transgenic mice. Basic Research in Cardiology, 2007, 102, 183-193.	5.9	46
110	Inhibition of p38α MAPK rescues cardiomyopathy induced by overexpressed β2-adrenergic receptor, but not β1-adrenergic receptor. Journal of Clinical Investigation, 2007, 117, 1335-1343.	8.2	53
111	Inhibition of Nuclear Import of Calcineurin Prevents Myocardial Hypertrophy. Circulation Research, 2006, 99, 626-635.	4.5	59
112	Cyclic AMP Imaging in Adult Cardiac Myocytes Reveals Far-Reaching β 1 -Adrenergic but Locally Confined β 2 -Adrenergic Receptor–Mediated Signaling. Circulation Research, 2006, 99, 1084-1091.	4.5	321
113	GS Activation Is Time-limiting in Initiating Receptor-mediated Signaling. Journal of Biological Chemistry, 2006, 281, 33345-33351.	3.4	116
114	Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco. Molecular Microbiology, 2005, 58, 1406-1420.	2.5	48
115	The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature Medicine, 2005, 11, 837-844.	30.7	105
116	Real-time Monitoring of the PDE2 Activity of Live Cells. Journal of Biological Chemistry, 2005, 280, 1716-1719.	3.4	122
117	Self-Limitation of Intravenous Tocolysis with β2-Adrenergic Agonists Is Mediated through Receptor G Protein Uncoupling. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2882-2887.	3.6	18
118	β-Adrenergic Receptors in Heart Failure. Heart Failure Clinics, 2005, 1, 183-191.	2.1	10
119	Altered Calcium Handling Is Critically Involved in the Cardiotoxic Effects of Chronic β-Adrenergic Stimulation. Circulation, 2004, 109, 1154-1160.	1.6	97
120	Pulmonary Hypertension and Right Heart Failure in Pituitary Adenylate Cyclase–Activating Polypeptide Type I Receptor–Deficient Mice. Circulation, 2004, 110, 3245-3251.	1.6	77
121	Calcium channel function and regulation in � 1 - and � 2 -adrenoceptor transgenic mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 490-495.	3.0	4
122	Circadian and Short-Term Regulation of Blood Pressure and Heart Rate in Transgenic Mice with Cardiac Overexpression of The β1-Adrenoceptor. Chronobiology International, 2004, 21, 205-216.	2.0	27
123	Proteomics Strategies in Cardiovascular Research. Journal of Proteome Research, 2004, 3, 200-208.	3.7	25
124	Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in β1-adrenergic receptor transgenic mice. Journal of Molecular and Cellular Cardiology, 2003, 35, 389-397.	1.9	31
125	Inverse agonism at β1-adrenergic receptors. International Congress Series, 2003, 1249, 55-61.	0.2	2
126	Partial Agonist Activity of Bucindolol Is Dependent on the Activation State of the Human \hat{l}^2 1 -Adrenergic Receptor. Circulation, 2003, 108, 348-353.	1.6	50

#	Article	IF	CITATIONS
127	What Is the Role of β-Adrenergic Signaling in Heart Failure?. Circulation Research, 2003, 93, 896-906.	4.5	687
128	Common Genomic Response in Different Mouse Models of β-Adrenergic–Induced Cardiomyopathy. Circulation, 2003, 108, 2926-2933.	1.6	68
129	Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2471-H2481.	3.2	39
130	Inhibition of Na ⁺ -H ⁺ Exchange Prevents Hypertrophy, Fibrosis, and Heart Failure in β ₁ -Adrenergic Receptor Transgenic Mice. Circulation Research, 2002, 90, 814-819.	4.5	186
131	NPP1, aPhytophthora-associated trigger of plant defense in parsley andArabidopsis. Plant Journal, 2002, 32, 375-390.	5.7	289
132	Dobutamine-Stress Magnetic Resonance Microimaging in Mice. Circulation Research, 2001, 88, 563-569.	4.5	143
133	Protein Kinase A Transgenes. Circulation Research, 2001, 89, 938-940.	4.5	22
134	Abolition of (-)-CGP 12177-evoked cardiostimulation in double ? 1 /? 2 -adrenoceptor knockout mice. Obligatory role of ? 1 -adrenoceptors for putative ? 4 -adrenoceptor pharmacology. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 87-93.	3.0	106
135	Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the \hat{l}^2 1 $\hat{a}^{\prime\prime}$ adrenergic receptor. FASEB Journal, 2001, 15, 1-18.	0.5	50
136	Vascular Hypertrophy and Increased P70S6 Kinase in Mice Lacking the Angiotensin II AT 2 Receptor. Circulation, 2001, 104, 2602-2607.	1.6	54
137	Progressive hypertrophy and heart failure in β ₁ -adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7059-7064.	7.1	719
138	Tocolytic Therapy with Fenoterol Induces Selective Down-Regulation of β-Adrenergic Receptors in Human Myometrium ¹ . Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1235-1242.	3.6	36
139	Tocolytic Therapy with Fenoterol Induces Selective Down-Regulation of Â-Adrenergic Receptors in Human Myometrium. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1235-1242. 	3.6	25
140	Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: Progressive reduction of beta1-adrenergic receptor mRNA in heart failure. Journal of the American College of Cardiology, 1996, 27, 146-154.	2.8	102