Stefan Engelhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181112/publications.pdf

Version: 2024-02-01

140 papers 14,645 citations

53 h-index 19190 118 g-index

143 all docs 143
docs citations

times ranked

143

18101 citing authors

#	Article	IF	CITATIONS
1	MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456, 980-984.	27.8	2,111
2	MicroRNAs in the Human Heart. Circulation, 2007, 116, 258-267.	1.6	852
3	Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. Journal of Clinical Investigation, 2014, 124, 2136-2146.	8.2	803
4	Progressive hypertrophy and heart failure in \hat{l}^2 ₁ -adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7059-7064.	7.1	719
5	What Is the Role of Î ² -Adrenergic Signaling in Heart Failure?. Circulation Research, 2003, 93, 896-906.	4.5	687
6	The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nature Communications, 2012, 3, 1078.	12.8	518
7	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	7.1	412
8	MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation, 2011, 124, 720-730.	1.6	358
9	Cyclic AMP Imaging in Adult Cardiac Myocytes Reveals Far-Reaching β 1 -Adrenergic but Locally Confined β 2 -Adrenergic Receptor–Mediated Signaling. Circulation Research, 2006, 99, 1084-1091.	4.5	321
10	Long noncoding RNA <i>Chast</i> promotes cardiac remodeling. Science Translational Medicine, 2016, 8, 326ra22.	12.4	321
11	Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell, 2007, 18, 3721-3744.	6.6	314
12	Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. European Heart Journal, 2018, 39, 2704-2716.	2.2	300
13	NPP1, aPhytophthora-associated trigger of plant defense in parsley andArabidopsis. Plant Journal, 2002, 32, 375-390.	5.7	289
14	Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Research, 2015, 43, 6450-6458.	14.5	278
15	Characterization of circular RNAs in human, mouse and rat hearts. Journal of Molecular and Cellular Cardiology, 2016, 98, 103-107.	1.9	274
16	MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors. Circulation, 2013, 127, 2097-2106.	1.6	203
17	Analysis of receptor oligomerization by FRAP microscopy. Nature Methods, 2009, 6, 225-230.	19.0	187
18	Inhibition of Na ⁺ -H ⁺ Exchange Prevents Hypertrophy, Fibrosis, and Heart Failure in β ₁ -Adrenergic Receptor Transgenic Mice. Circulation Research, 2002, 90, 814-819.	4.5	186

#	Article	IF	CITATIONS
19	Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis. Journal of the American College of Cardiology, 2016, 67, 2018-2028.	2.8	186
20	Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nature Communications, 2017, 8, 1614.	12.8	172
21	H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation, 2018, 138, 1551-1568.	1.6	169
22	Circular <scp>RNAs</scp> in heart failure. European Journal of Heart Failure, 2017, 19, 701-709.	7.1	168
23	Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophy. Circulation, $2011,124,796-805.$	1.6	144
24	Dobutamine-Stress Magnetic Resonance Microimaging in Mice. Circulation Research, 2001, 88, 563-569.	4. 5	143
25	Real-time optical recording of \hat{l}^21 -adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. Journal of Clinical Investigation, 2007, 117, 229-235.	8.2	126
26	Real-time Monitoring of the PDE2 Activity of Live Cells. Journal of Biological Chemistry, 2005, 280, 1716-1719.	3.4	122
27	GS Activation Is Time-limiting in Initiating Receptor-mediated Signaling. Journal of Biological Chemistry, 2006, 281, 33345-33351.	3.4	116
28	Disrupting the EMMPRIN (CD147)–Cyclophilin A Interaction Reduces Infarct Size and Preserves Systolic Function After Myocardial Ischemia and Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1377-1386.	2.4	109
29	Abolition of (-)-CGP 12177-evoked cardiostimulation in double ? 1 /? 2 -adrenoceptor knockout mice. Obligatory role of ? 1 -adrenoceptors for putative ? 4 -adrenoceptor pharmacology. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 87-93.	3.0	106
30	The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature Medicine, 2005, 11, 837-844.	30.7	105
31	A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 13-20.	1.9	104
32	Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: Progressive reduction of beta1-adrenergic receptor mRNA in heart failure. Journal of the American College of Cardiology, 1996, 27, 146-154.	2.8	102
33	Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. Journal of Clinical Investigation, 2011, 121, 461-462.	8.2	101
34	A Role for Caspase-1 in Heart Failure. Circulation Research, 2007, 100, 645-653.	4. 5	98
35	Polymorphic Variants of Adrenoceptors: Pharmacology, Physiology, and Role in Disease. Pharmacological Reviews, 2014, 66, 598-637.	16.0	98
36	Altered Calcium Handling Is Critically Involved in the Cardiotoxic Effects of Chronic \hat{l}^2 -Adrenergic Stimulation. Circulation, 2004, 109, 1154-1160.	1.6	97

#	Article	IF	Citations
37	Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination. Neuron, 2016, 92, 845-856.	8.1	89
38	$\hat{Gl}\pm i$ is required for carvedilol-induced \hat{I}^21 adrenergic receptor \hat{I}^2 -arrestin biased signaling. Nature Communications, 2017, 8, 1706.	12.8	83
39	AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2020, 75, 1788-1800.	2.8	82
40	Targeting muscle-enriched long non-coding RNA <i>H19</i> reverses pathological cardiac hypertrophy. European Heart Journal, 2020, 41, 3462-3474.	2.2	81
41	Pulmonary Hypertension and Right Heart Failure in Pituitary Adenylate Cyclase–Activating Polypeptide Type I Receptor–Deficient Mice. Circulation, 2004, 110, 3245-3251.	1.6	77
42	Relocalization of Late Blight Resistance Protein R3a to Endosomal Compartments Is Associated with Effector Recognition and Required for the Immune Response. Plant Cell, 2013, 24, 5142-5158.	6.6	77
43	Minireview: GPCR and G Proteins: Drug Efficacy and Activation in Live Cells. Molecular Endocrinology, 2009, 23, 590-599.	3.7	73
44	The Bispecific SDF1-GPVI Fusion Protein Preserves Myocardial Function After Transient Ischemia in Mice. Circulation, 2012, 125, 685-696.	1.6	73
45	microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription. PLoS ONE, 2013, 8, e75882.	2.5	72
46	Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation. Journal of Clinical Investigation, 2014, 124, 5385-5397.	8.2	70
47	Common Genomic Response in Different Mouse Models of β-Adrenergic–Induced Cardiomyopathy. Circulation, 2003, 108, 2926-2933.	1.6	68
48	Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovascular Research, 2014, 104, 15-23.	3.8	68
49	MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 2021, 143, 1513-1525.	1.6	67
50	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	4.8	66
51	Accuracy and Completeness of Drug Information in Wikipedia: A Comparison with Standard Textbooks of Pharmacology. PLoS ONE, 2014, 9, e106930.	2.5	63
52	Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nature Communications, 2020, 11, 2039.	12.8	63
53	Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB Journal, 2012, 26, 1009-1017.	0.5	61
54	Inhibition of Nuclear Import of Calcineurin Prevents Myocardial Hypertrophy. Circulation Research, 2006, 99, 626-635.	4.5	59

#	Article	IF	CITATIONS
55	FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Research in Cardiology, 2014, 109, 451.	5.9	58
56	Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biology Plus, 2019, 1, 100005.	3.5	55
57	Vascular Hypertrophy and Increased P70S6 Kinase in Mice Lacking the Angiotensin II AT 2 Receptor. Circulation, 2001, 104, 2602-2607.	1.6	54
58	Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications, 2020, 11, 4549.	12.8	54
59	A Secretion Trap Screen in Yeast Identifies Protease Inhibitor 16 as a Novel Antihypertrophic Protein Secreted From the Heart. Circulation, 2007, 116, 1768-1775.	1.6	53
60	Functional mapping of harpin HrpZ of <i>Pseudomonas syringae</i> reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology, 2011, 12, 151-166.	4.2	53
61	Inhibition of p38 $\hat{l}\pm$ MAPK rescues cardiomyopathy induced by overexpressed \hat{l}^22 -adrenergic receptor, but not \hat{l}^21 -adrenergic receptor. Journal of Clinical Investigation, 2007, 117, 1335-1343.	8.2	53
62	Separable roles of the <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> accessory protein HrpZ1 in ionâ \in conducting pore formation and activation of plant immunity. Plant Journal, 2009, 57, 706-717.	5.7	52
63	Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart. Molecular Therapy, 2016, 24, 1939-1948.	8.2	51
64	Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the \hat{l}^2 1 \hat{a} adrenergic receptor. FASEB Journal, 2001, 15, 1-18.	0.5	50
65	Partial Agonist Activity of Bucindolol Is Dependent on the Activation State of the Human \hat{l}^2 1 -Adrenergic Receptor. Circulation, 2003, 108, 348-353.	1.6	50
66	Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovascular Research, 2018, 114, 291-299.	3.8	50
67	MicroRNAs as therapeutic targets in cardiovascular disease. Journal of Clinical Investigation, 2022, 132, .	8.2	50
68	Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco. Molecular Microbiology, 2005, 58, 1406-1420.	2.5	48
69	Interstitial remodeling in \hat{l}^21 -adrenergic receptor transgenic mice. Basic Research in Cardiology, 2007, 102, 183-193.	5.9	46
70	Detection of the Virulent Form of AVR3a from Phytophthora infestans following Artificial Evolution of Potato Resistance Gene R3a. PLoS ONE, 2014, 9, e110158.	2.5	45
71	AntimiR-132 Attenuates Myocardial Hypertrophy in an Animal Model of Percutaneous Aortic Constriction. Journal of the American College of Cardiology, 2021, 77, 2923-2935.	2.8	41
72	Renal AAV2-Mediated Overexpression of Long Non-Coding RNA H19 Attenuates Ischemic Acute Kidney Injury Through Sponging of microRNA-30a-5p. Journal of the American Society of Nephrology: JASN, 2021, 32, 323-341.	6.1	40

#	Article	IF	Citations
73	Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2471-H2481.	3.2	39
74	Good Riddance? Breaking Disease Susceptibility in the Era of New Breeding Technologies. Agronomy, 2018, 8, 114.	3.0	39
75	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	3.8	39
76	Critical Role of Transcription Factor Cyclic AMP Response Element Modulator in \hat{l}^2 1 -Adrenoceptor \hat{a} -Mediated Cardiac Dysfunction. Circulation, 2009, 119, 79-88.	1.6	38
77	The human transcriptome is enriched for miRNA-binding sites located in cooperativity-permitting distance. RNA Biology, 2013, 10, 1125-1135.	3.1	38
78	miR-212/132 Cluster Modulation Prevents Doxorubicin-Mediated Atrophy and Cardiotoxicity. Molecular Therapy, 2019, 27, 17-28.	8.2	38
79	Use of Learning Media by Undergraduate Medical Students in Pharmacology: A Prospective Cohort Study. PLoS ONE, 2015, 10, e0122624.	2.5	37
80	Tocolytic Therapy with Fenoterol Induces Selective Down-Regulation of \hat{l}^2 -Adrenergic Receptors in Human Myometrium (sup) 1 (sup). Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1235-1242.	3.6	36
81	Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: A role for ER stress?. Journal of Molecular and Cellular Cardiology, 2009, 46, 225-233.	1.9	33
82	Small RNA Biomarkers Come of Age. Journal of the American College of Cardiology, 2012, 60, 300-303.	2.8	32
83	Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium. Journal of Molecular and Cellular Cardiology, 2016, 99, 57-64.	1.9	32
84	Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in \hat{l}^21 -adrenergic receptor transgenic mice. Journal of Molecular and Cellular Cardiology, 2003, 35, 389-397.	1.9	31
85	MiR-223 is dispensable for platelet production and function in mice. Thrombosis and Haemostasis, 2013, 110, 1207-1214.	3.4	31
86	Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling. Cellular Signalling, 2014, 26, 233-239.	3.6	31
87	Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. Journal of Clinical Investigation, 2017, 127, 4285-4296.	8.2	31
88	MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Experimental Hematology, 2015, 43, 858-868.e7.	0.4	28
89	Circadian and Short-Term Regulation of Blood Pressure and Heart Rate in Transgenic Mice with Cardiac Overexpression of The \hat{l}^21 -Adrenoceptor. Chronobiology International, 2004, 21, 205-216.	2.0	27
90	Proteomics Strategies in Cardiovascular Research. Journal of Proteome Research, 2004, 3, 200-208.	3.7	25

#	Article	IF	Citations
91	Tocolytic Therapy with Fenoterol Induces Selective Down-Regulation of Â-Adrenergic Receptors in Human Myometrium. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1235-1242.	3.6	25
92	Protein Kinase A Transgenes. Circulation Research, 2001, 89, 938-940.	4.5	22
93	Activation of AP-1 Contributes to the \hat{I}^2 -Adrenoceptor-Mediated Myocardial Induction of Interleukin-6. Molecular Medicine, 2007, 13, 605-614.	4.4	22
94	A Polymorphism-Specific "Memory―Mechanism in the β ₂ -Adrenergic Receptor. Science Signaling, 2011, 4, ra53.	3.6	22
95	Metavinculin modulates force transduction in cell adhesion sites. Nature Communications, 2020, 11, 6403.	12.8	21
96	Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation. Nucleic Acids Research, 2017, 45, 10218-10228.	14.5	19
97	Self-Limitation of Intravenous Tocolysis with \hat{I}^2 2-Adrenergic Agonists Is Mediated through Receptor G Protein Uncoupling. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2882-2887.	3.6	18
98	Titin Circular RNAs Create a Back-Splice Motif Essential for SRSF10 Splicing. Circulation, 2021, 143, 1502-1512.	1.6	18
99	Alternative signaling: cardiomyocyte \hat{I}^21 -adrenergic receptors signal through EGFRs. Journal of Clinical Investigation, 2007, 117, 2396-2398.	8.2	17
100	Dynamics of $\widehat{Gl}\pm i1$ interaction with type $\widehat{A5}$ adenylate cyclase reveal the molecular basis for high sensitivity of \widehat{Gi} -mediated inhibition of cAMP production. Biochemical Journal, 2013, 454, 515-523.	3.7	17
101	Inhibition of Cullin-RING E3 ubiquitin ligase 7 by simian virus 40 large T antigen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3371-3376.	7.1	16
102	Nuclear calcineurin is a sensor for detecting Ca2+ release from the nuclear envelope via IP3R. Journal of Molecular Medicine, 2018, 96, 1239-1249.	3.9	16
103	G Proteins. Circulation Research, 2007, 100, 1109-1111.	4.5	15
104	MicroRNA-365 regulates human cardiac action potential duration. Nature Communications, 2022, 13, 220.	12.8	15
105	Correlation of online assessment parameters with summative exam performance in undergraduate medical education of pharmacology: a prospective cohort study. BMC Medical Education, 2019, 19, 412.	2.4	14
106	Regulation and Functions of ROP GTPases in Plant–Microbe Interactions. Cells, 2020, 9, 2016.	4.1	13
107	CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nature Protocols, 2022, 17, 1142-1188.	12.0	13
108	The long non-coding RNA NRON promotes the development of cardiac hypertrophy in the murine heart. Molecular Therapy, 2022, 30, 1265-1274.	8.2	12

#	Article	IF	CITATIONS
109	ROP INTERACTIVE PARTNER b Interacts with RACB and Supports Fungal Penetration into Barley Epidermal Cells. Plant Physiology, 2020, 184, 823-836.	4.8	11
110	Î ² -Adrenergic Receptors in Heart Failure. Heart Failure Clinics, 2005, 1, 183-191.	2.1	10
111	Interhelical Interaction and Receptor Phosphorylation Regulate the Activation Kinetics of Different Human \hat{l}^21 -Adrenoceptor Variants. Journal of Biological Chemistry, 2015, 290, 1760-1769.	3.4	10
112	In Vivo Protein–Protein Interaction Studies with BiFC: Conditions, Cautions, and Caveats. Methods in Molecular Biology, 2014, 1127, 81-90.	0.9	10
113	Lack of Gα _{i2} leads to dilative cardiomyopathy and increased mortality in β ₁ -adrenoceptor overexpressing mice. Cardiovascular Research, 2015, 108, 348-356.	3.8	9
114	Polymorphisms determine \hat{l}^2 -adrenoceptor conformation: implications for cardiovascular disease and therapy. Trends in Pharmacological Sciences, 2009, 30, 188-193.	8.7	8
115	Pharmacases.de – A student-centered e-learning project of clinical pharmacology. Medical Teacher, 2013, 35, 251-253.	1.8	8
116	Completion of neuronal remodeling prompts myelination along developing motor axon branches. Journal of Cell Biology, 2021, 220, .	5.2	7
117	Uncovering the molecular identity of cardiosphere-derived cells (CDCs) by single-cell RNA sequencing. Basic Research in Cardiology, 2022, 117, 11.	5.9	7
118	Coinciding functions for miR-145 in vascular smooth muscle and cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 2013, 65, 105-107.	1.9	6
119	Intercellular miRNA Traffic. Circulation Research, 2015, 116, 1726-1728.	4.5	6
120	DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Research in Cardiology, 2021, 116, 2.	5.9	5
121	Two serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment. PLoS ONE, 2017, 12, e0176450.	2.5	5
122	Calcium channel function and regulation in $\ddot{\imath}\frac{1}{2}$ 1 - and $\ddot{\imath}_{\dot{\imath}}\frac{1}{2}$ 2 -adrenoceptor transgenic mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 490-495.	3.0	4
123	The Hypersensitive Response in PAMP- and Effector-Triggered Immune Responses. , 2015, , 235-268.		4
124	Genetic ablation of Cullin-RING E3 ubiquitin ligase 7 restrains pressure overload-induced myocardial fibrosis. PLoS ONE, 2020, 15, e0244096.	2.5	4
125	Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS ONE, 2022, 17, e0258924.	2.5	4
126	MicroRNA Augmentation of Bone Marrow–Derived Cell Therapy â^—. Journal of the American College of Cardiology, 2015, 66, 2227-2229.	2.8	3

#	Article	IF	CITATIONS
127	Inverse agonism at \hat{I}^21 -adrenergic receptors. International Congress Series, 2003, 1249, 55-61.	0.2	2
128	OnlineTED.com-a novel web-based audience response system for higher education. A pilot study to evaluate user acceptance. GMS Zeitschrift F $\tilde{A}^{1}/_{4}$ r Medizinische Ausbildung, 2014, 31, Doc5.	1.2	2
129	Generation of heterozygous (MRli003-A-5) and homozygous (MRli003-A-6) voltage-sensing knock-in human iPSC lines by CRISPR/Cas9 editing of the AAVS1 locus. Stem Cell Research, 2022, 61, 102785.	0.7	2
130	Internet discussion forums as part of a student-centred teaching concept of pharmacology. GMS Zeitschrift $F\tilde{A}^{1}\!\!/_{4}r$ Medizinische Ausbildung, 2013, 30, Doc2.	1.2	1
131	High precision-cut liver slice model to study cell-autonomous anti-viral defense of hepatocytes within their microenvironment. JHEP Reports, 2022, 4, 100465.	4.9	1
132	Role of PDE3 and PDE4 for \hat{l}^2 -adrenergic control of cAMP and ICa,L in adult rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2007, 42, S49.	1.9	0
133	Paradoxical resistance to ischaemic injury in hearts of NHE1-transgenic mice. Journal of Molecular and Cellular Cardiology, 2007, 42, S196.	1.9	O
134	Subcellular Mechanisms of Early Impaired Calcium Homeostasis with Chronic Beta1-Adrenergic Stimulation in Mice. Biophysical Journal, 2010, 98, 296a.	0.5	0
135	Single-cell cardiovascular research. Cardiovascular Research, 2020, 116, 1399-1401.	3.8	O
136	Glycosylation-dependent cleavage of the human \hat{l}^21 -adrenoceptor. Journal of Molecular and Cellular Cardiology, 2021, 154, 154-155.	1.9	0
137	Title is missing!. , 2020, 15, e0244096.		0
138	Title is missing!. , 2020, 15, e0244096.		0
139	Title is missing!. , 2020, 15, e0244096.		0
140	Title is missing!. , 2020, 15, e0244096.		0