Marcelo G Kazanietz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1810705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The anti-Rac1-GTP antibody and the detection of active Rac1: a tool with a fundamental flaw. Small GTPases, 2022, 13, 136-140.	1.6	1
2	Activating <i>RAC1</i> variants in the switch II region cause a developmental syndrome and alter neuronal morphology. Brain, 2022, 145, 4232-4245.	7.6	6
3	Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Science Signaling, 2022, 15, eabo0264.	3.6	16
4	Quantification of ruffle area and dynamics in live or fixed lung adenocarcinoma cells. STAR Protocols, 2022, 3, 101437.	1.2	3
5	Nonredundant Rac-GEF control of actin cytoskeleton reorganization. Trends in Cell Biology, 2022, , .	7.9	2
6	PKCε regulates Rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases, 2021, 12, 202-208.	1.6	11
7	Design, Synthesis, and Characterization of Novel <i>sn</i> -1 Heterocyclic DAG-Lactones as PKC Activators. Journal of Medicinal Chemistry, 2021, 64, 11418-11431.	6.4	5
8	Targeting the coronavirus nucleocapsid protein through GSK-3 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
9	FARP1, ARHGEF39, and TIAM2 are essential receptor tyrosine kinase effectors for Rac1-dependent cell motility in human lung adenocarcinoma. Cell Reports, 2021, 37, 109905.	6.4	20
10	ldentification of a truncated β1-chimaerin variant that inactivates nuclear Rac1. Journal of Biological Chemistry, 2020, 295, 1300-1314.	3.4	3
11	PKC Ϊμ Is Required for KRAS-Driven Lung Tumorigenesis. Cancer Research, 2020, 80, 5166-5173.	0.9	19
12	The PKC universe keeps expanding: From cancer initiation to metastasis. Advances in Biological Regulation, 2020, 78, 100755.	2.3	16
13	Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. Journal of Biological Chemistry, 2020, 295, 13698-13710.	3.4	11
14	Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease. American Journal of Physiology - Cell Physiology, 2020, 319, C877-C884.	4.6	16
15	Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 118.	3.7	21
16	P-REX1-Independent, Calcium-Dependent RAC1 Hyperactivation in Prostate Cancer. Cancers, 2020, 12, 480.	3.7	13
17	Identification of a truncated β1-chimaerin variant that inactivates nuclear Rac1. Journal of Biological Chemistry, 2020, 295, 1300-1314.	3.4	2
18	5-oxo-ETE activates migration of H295R adrenocortical cells via MAPK and PKC pathways. Prostaglandins and Other Lipid Mediators, 2019, 144, 106346.	1.9	4

MARCELO G KAZANIETZ

#	Article	IF	CITATIONS
19	CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond. Frontiers in Endocrinology, 2019, 10, 471.	3.5	183
20	PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Frontiers in Oncology, 2019, 9, 1323.	2.8	26
21	ΔNp63α suppresses cells invasion by downregulating PKCγ/Rac1 signaling through miR-320a. Cell Death and Disease, 2019, 10, 680.	6.3	17
22	Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Scientific Reports, 2019, 9, 6041.	3.3	22
23	Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene, 2019, 38, 5396-5412.	5.9	20
24	Discovery of a small-molecule protein kinase Cl´-selective activator with promising application in colon cancer therapy. Cell Death and Disease, 2018, 9, 23.	6.3	25
25	The P-Rex1/Rac signaling pathway as a point of convergence for HER/ErbB receptor and GPCR responses. Small GTPases, 2018, 9, 297-303.	1.6	12
26	P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer. Oncotarget, 2018, 9, 28612-28624.	1.8	9
27	COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene, 2018, 37, 4735-4749.	5.9	48
28	The role of Rac in tumor susceptibility and disease progression: from biochemistry to the clinic. Biochemical Society Transactions, 2018, 46, 1003-1012.	3.4	26
29	Characterization of AJH-836, a diacylglycerol-lactone with selectivity for novel PKC isozymes. Journal of Biological Chemistry, 2018, 293, 8330-8341.	3.4	22
30	Protein kinase C in cancer: The top five unanswered questions. Molecular Carcinogenesis, 2017, 56, 1531-1542.	2.7	75
31	Nuclear PKCÎ ¹ -ECT2-Rac1 and Ribosome Biogenesis: A Novel Axis in Lung Tumorigenesis. Cancer Cell, 2017, 31, 167-169.	16.8	18
32	Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell Reports, 2017, 19, 375-388.	6.4	72
33	The Rac GTPase in Cancer: From Old Concepts to New Paradigms. Cancer Research, 2017, 77, 5445-5451.	0.9	155
34	Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α. Molecular and Cellular Biology, 2016, 36, 2011-2026.	2.3	46
35	Characterization of a P-Rex1 gene signature in breast cancer cells. Oncotarget, 2016, 7, 51335-51348.	1.8	12
36	C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms. Oncotarget, 2016, 7, 45060-45078.	1.8	23

Marcelo G Kazanietz

#	Article	IF	CITATIONS
37	PKCΪμ Is an Essential Mediator of Prostate Cancer Bone Metastasis. Molecular Cancer Research, 2015, 13, 1336-1346.	3.4	36
38	Protein Kinase C <i>α</i> Mediates Erlotinib Resistance in Lung Cancer Cells. Molecular Pharmacology, 2015, 87, 832-841.	2.3	30
39	Transcriptional Regulation of Oncogenic Protein Kinase Cl̈μ (PKCl̈μ) by STAT1 and Sp1 Proteins. Journal of Biological Chemistry, 2014, 289, 19823-19838.	3.4	27
40	Subtype-specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with promoter hypomethylation. Breast Cancer Research, 2014, 16, 441.	5.0	33
41	β3-Chimaerin, a novel member of the chimaerin Rac-GAP family. Molecular Biology Reports, 2014, 41, 2067-2076.	2.3	10
42	Differential signaling of the GnRH receptor in pituitary gonadotrope cell lines and prostate cancer cell lines. Molecular and Cellular Endocrinology, 2013, 369, 107-118.	3.2	17
43	A Host GPCR Signaling Network Required for the Cytolysis of Infected Cells Facilitates Release of Apicomplexan Parasites. Cell Host and Microbe, 2013, 13, 15-28.	11.0	37
44	Coordinated activation of the Rac-GAP \hat{l}^22 -chimaerin by an atypical proline-rich domain and diacylglycerol. Nature Communications, 2013, 4, 1849.	12.8	13
45	Cucurbitacin I Inhibits Rac1 Activation in Breast Cancer Cells by a Reactive Oxygen Species-Mediated Mechanism and Independently of Janus Tyrosine Kinase 2 and P-Rex1. Molecular Pharmacology, 2013, 83, 1141-1154.	2.3	41
46	Modulation of Pancreatic Tumor Potential by Overexpression of Protein Kinase C β1. Pancreas, 2013, 42, 1060-1069.	1.1	6
47	Regulation of Transcriptional Networks by PKC Isozymes: Identification of c-Rel as a Key Transcription Factor for PKC-Regulated Genes. PLoS ONE, 2013, 8, e67319.	2.5	25
48	Activation of Nuclear Factor κB (NF-κB) in Prostate Cancer Is Mediated by Protein Kinase C ϵ (PKCϵ). Journal of Biological Chemistry, 2012, 287, 37570-37582.	3.4	61
49	Rho GEFs and Cancer: Linking Gene Expression and Metastatic Dissemination. Science Signaling, 2012, 5, pe43.	3.6	50
50	The RacGAP β2-Chimaerin Selectively Mediates Axonal Pruning in the Hippocampus. Cell, 2012, 149, 1594-1606.	28.9	73
51	Rac signaling in breast cancer: A tale of GEFs and GAPs. Cellular Signalling, 2012, 24, 353-362.	3.6	162
52	Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon. PLoS ONE, 2012, 7, e31714.	2.5	50
53	Rac1 Takes Center Stage in Pancreatic Cancer and Ulcerative Colitis: Quantity Matters. Gastroenterology, 2011, 141, 427-430.	1.3	7
54	Protein Kinase C Regulation: C1 Meets C-tail. Structure, 2011, 19, 144-146.	3.3	10

Marcelo G Kazanietz

#	Article	IF	CITATIONS
55	Transgenic overexpression of PKCε in the mouse prostate induces preneoplastic lesions. Cell Cycle, 2011, 10, 268-277.	2.6	48
56	Differential Regulation of Gene Expression by Protein Kinase C Isozymes as Determined by Genome-wide Expression Analysis. Journal of Biological Chemistry, 2011, 286, 11254-11264.	3.4	40
57	p23/Tmp21 Associates with Protein Kinase Cl̃´ (PKCl̃́) and Modulates Its Apoptotic Function. Journal of Biological Chemistry, 2011, 286, 15821-15831.	3.4	35
58	PKC Delta (PKCÎ) Promotes Tumoral Progression of Human Ductal Pancreatic Cancer. Pancreas, 2010, 39, e31-e41.	1.1	56
59	Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Experimental Cell Research, 2010, 316, 401-411.	2.6	32
60	Bryostatin 1 Inhibits Phorbol Ester-Induced Apoptosis in Prostate Cancer Cells by Differentially Modulating Protein Kinase C (PKC) l´Translocation and Preventing PKCl´-Mediated Release of Tumor Necrosis Factor-l±. Molecular Pharmacology, 2010, 78, 325-332.	2.3	45
61	p23/Tmp21 Differentially Targets the Rac-GAP β2-Chimaerin and Protein Kinase C via Their C1 Domains. Molecular Biology of the Cell, 2010, 21, 1398-1408.	2.1	23
62	Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle, 2010, 9, 570-579.	2.6	190
63	A Novel Cross-talk in Diacylglycerol Signaling. Journal of Biological Chemistry, 2010, 285, 16931-16941.	3.4	17
64	Identification of the Rac-GEF P-Rex1 as an Essential Mediator of ErbB Signaling in Breast Cancer. Molecular Cell, 2010, 40, 877-892.	9.7	194
65	Regulation of Prostate Cancer Cell Survival by Protein Kinase Câ [~] Involves Bad Phosphorylation and Modulation of the TNFα/JNK Pathway. Journal of Biological Chemistry, 2010, 285, 26033-26040.	3.4	39
66	ROCK Mediates Phorbol Ester-induced Apoptosis in Prostate Cancer Cells via p21Cip1 Up-regulation and JNK. Journal of Biological Chemistry, 2009, 284, 29365-29375.	3.4	41
67	PKCâ€mediated secretion of death factors in LNCaP prostate cancer cells is regulated by androgens. Molecular Carcinogenesis, 2009, 48, 187-195.	2.7	23
68	Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 392-408.	4.9	37
69	Opposite effects of protein kinase C beta1 (PKCβ1) and PKCε in the metastatic potential of a breast cancer murine model. Breast Cancer Research and Treatment, 2009, 118, 469-480.	2.5	23
70	Identification of an Autoinhibitory Mechanism That Restricts C1 Domain-mediated Activation of the Rac-GAP α2-Chimaerin. Journal of Biological Chemistry, 2008, 283, 35247-35257.	3.4	26
71	S-Phase-specific Activation of PKCα Induces Senescence in Non-small Cell Lung Cancer Cells. Journal of Biological Chemistry, 2008, 283, 5466-5476.	3.4	50
72	Chapter 7 Phorbol Ester–Induced Apoptosis and Senescence in Cancer Cell Models. Methods in Enzymology, 2008, 446, 123-139.	1.0	21

#	Article	IF	CITATIONS
73	Heregulin β1 promotes breast cancer cell proliferation through Rac/ERK-dependent induction of cyclin D1 and p21Cip1. Biochemical Journal, 2008, 410, 167-175.	3.7	48
74	Phospholipase CÎ ² Is Critical for T Cell Chemotaxis. Journal of Immunology, 2007, 179, 2223-2227.	0.8	75
75	Benzo[a]pyrene-7,8-dihydrodiol Promotes Checkpoint Activation and G2/M Arrest in Human Bronchoalveolar Carcinoma H358 Cells. Molecular Pharmacology, 2007, 71, 744-750.	2.3	30
76	NFκB-Independent Signaling to the Cyclin D1 Gene by Rac. Cell Cycle, 2007, 6, 1115-1121.	2.6	23
77	α6β4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-κB-dependent resistance to apoptosis in 3D mammary acini. Journal of Cell Science, 2007, 120, 3700-3712.	2.0	75
78	Chimaerins: GAPs that bridge diacylglycerol signalling and the small G-protein Rac. Biochemical Journal, 2007, 403, 1-12.	3.7	77
79	Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 2007, 7, 281-294.	28.4	865
80	Protein kinase C \hat{l}' inhibits the production of proteolytic enzymes in murine mammary cells. Clinical and Experimental Metastasis, 2007, 24, 513-520.	3.3	10
81	C1 domains exposed: From diacylglycerol binding to protein–protein interactions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 827-837.	2.4	258
82	Phospholipase Cγ/diacylglycerol-dependent activation of β2-chimaerin restricts EGF-induced Rac signaling. EMBO Journal, 2006, 25, 2062-2074.	7.8	48
83	The zebrafish homologue of mammalian chimerin Rac-GAPs is implicated in epiboly progression during development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5373-5378.	7.1	28
84	Essential Role for Rac in Heregulin β1 Mitogenic Signaling: a Mechanism That Involves Epidermal Growth Factor Receptor and Is Independent of ErbB4. Molecular and Cellular Biology, 2006, 26, 831-842.	2.3	82
85	β2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells. Journal of Cell Science, 2006, 119, 141-152.	2.0	28
86	Post-transcriptional Destabilization of p21 by Protein Kinase C in Fibroblasts*. Journal of Biological Chemistry, 2006, 281, 38127-38132.	3.4	10
87	Androgens Regulate Protein Kinase CδTranscription and Modulate Its Apoptotic Function in Prostate Cancer Cells. Cancer Research, 2006, 66, 11792-11801.	0.9	38
88	Regulation of vascular smooth muscle proliferation and migration by beta2-chimaerin, a non-protein kinase C phorbol ester receptor. International Journal of Molecular Medicine, 2006, 17, 559-66.	4.0	7
89	Targeting protein kinase C and "non-kinase―phorbol ester receptors: Emerging concepts and therapeutic implications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 296-304.	2.3	49
90	Atypical protein kinase C-ζ modulates clonogenicity, motility, and secretion of proteolytic enzymes in murine mammary cells. Molecular Carcinogenesis, 2005, 42, 29-39.	2.7	34

MARCELO G KAZANIETZ

#	Article	IF	CITATIONS
91	Protein Kinase C δStimulates Apoptosis by Initiating G1 Phase Cell Cycle Progression and S Phase Arrest. Journal of Biological Chemistry, 2005, 280, 32107-32114.	3.4	53
92	Rac-GAP-dependent Inhibition of Breast Cancer Cell Proliferation by β2-Chimerin. Journal of Biological Chemistry, 2005, 280, 24363-24370.	3.4	74
93	Phorbol Ester-induced Apoptosis in Prostate Cancer Cells via Autocrine Activation of the Extrinsic Apoptotic Cascade. Journal of Biological Chemistry, 2005, 280, 38982-38991.	3.4	80
94	Phorbol Ester-induced G1 Phase Arrest Selectively Mediated by Protein Kinase Cδ-dependent Induction of p21. Journal of Biological Chemistry, 2005, 280, 33926-33934.	3.4	80
95	PKC isozymes and diacylglycerol-regulated proteins as effectors of growth factor receptors. Growth Factors, 2005, 23, 245-252.	1.7	49
96	Molecular Mechanisms of Protein Kinase C-induced Apoptosis in Prostate Cancer Cells. BMB Reports, 2005, 38, 639-645.	2.4	44
97	Protein Kinase C and Prostate Carcinogenesis: Targeting the Cell Cycle and Apoptotic Mechanisms. Current Drug Targets, 2004, 5, 431-443.	2.1	54
98	Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells. Biochemical Pharmacology, 2004, 67, 1873-1886.	4.4	10
99	Structural Mechanism for Lipid Activation of the Rac-Specific GAP, β2-Chimaerin. Cell, 2004, 119, 407-418.	28.9	133
100	Cell growth inhibition by all-trans retinoic acid in SKBR-3 breast cancer cells: Involvement of protein kinase C? and extracellular signal-regulated kinase mitogen-activated protein kinase. Molecular Carcinogenesis, 2003, 38, 106-116.	2.7	33
101	Divergence and complexities in DAG signaling: looking beyond PKC. Trends in Pharmacological Sciences, 2003, 24, 602-608.	8.7	204
102	Protein Kinase C Promotes Apoptosis in LNCaP Prostate Cancer Cells through Activation of p38 MAPK and Inhibition of the Akt Survival Pathway. Journal of Biological Chemistry, 2003, 278, 33753-33762.	3.4	221
103	Lysophosphatidic Acid Promotes Survival and Differentiation of Rat Schwann Cells. Journal of Biological Chemistry, 2003, 278, 9585-9591.	3.4	67
104	Phorbol Esters as Probes for the Study of Protein Kinase C Function. , 2003, 233, 423-440.		4
105	Pharmacological Probes for Protein Kinase C: An Introduction. , 2003, 233, 389-396.		0
106	DAG signaling taught us a lesson: what diverges can converge. Blood, 2003, 102, 1152-1152.	1.4	2
107	Characterization of the Rac-GAP (Rac-GTPase-activating protein) activity of β2-chimaerin, a â€~non-protein kinase C' phorbol ester receptor. Biochemical Journal, 2003, 375, 313-321	3.7	90
108	Inhibition of aggressiveness of metastatic mouse mammary carcinoma cells by the beta2-chimaerin GAP domain. Cancer Research, 2003, 63, 2284-91.	0.9	39

#	Article	IF	CITATIONS
109	Chimaerins, Novel Non-protein Kinase C Phorbol Ester Receptors, Associate with Tmp21-I (p23). Journal of Biological Chemistry, 2002, 277, 4541-4550.	3.4	57
110	Regulation of the Neuronal Glutamate Transporter Excitatory Amino Acid Carrier-1 (EAAC1) by Different Protein Kinase C Subtypes. Molecular Pharmacology, 2002, 62, 901-910.	2.3	96
111	Diacylglycerol (DAG)-lactones, a New Class of Protein Kinase C (PKC) Agonists, Induce Apoptosis in LNCaP Prostate Cancer Cells by Selective Activation of PKCα. Journal of Biological Chemistry, 2002, 277, 645-655.	3.4	88
112	Novel "Nonkinase―Phorbol Ester Receptors: The C1 Domain Connection. Molecular Pharmacology, 2002, 61, 759-767.	2.3	212
113	Interaction of the novel anthracycline antitumor agent N-benzyladriamycin-14-valerate with the C1-regulatory domain of protein kinase C: structural requirements, isoform specificity, and correlation with drug cytotoxicity. Molecular Cancer Therapeutics, 2002, 1, 483-92.	4.1	19
114	Phosphorylation of the Catalytic Subunit of Rat Renal Na+,K+-ATPase by Classical PKC Isoforms. Archives of Biochemistry and Biophysics, 2001, 388, 74-80.	3.0	35
115	Protein Kinase C Isozymes, Novel Phorbol Ester Receptors and Cancer Chemotherapy. Current Pharmaceutical Design, 2001, 7, 1725-44.	1.9	62
116	Molecular Models ofN-Benzyladriamycin-14-valerate (AD 198) in Complex with the Phorbol Ester-Binding C1b Domain of Protein Kinase C-δ. Journal of Medicinal Chemistry, 2001, 44, 1028-1034.	6.4	15
117	Rational design, synthesis, and biological evaluation of rigid pyrrolidone analogues as potential inhibitors of prostate cancer cell growth. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 955-959.	2.2	33
118	Phorbol Esters and Related Analogs Regulate the Subcellular Localization of β2-Chimaerin, a Non-protein Kinase C Phorbol Ester Receptor. Journal of Biological Chemistry, 2001, 276, 18303-18312.	3.4	62
119	Constitutive ERK1/2 Activation in Esophagogastric Rib Bone Marrow Micrometastatic Cells Is MEK-independent. Journal of Biological Chemistry, 2001, 276, 15537-15546.	3.4	43
120	Eyes wide shut: Protein kinase C isozymes are not the only receptors for the phorbol ester tumor promoters. , 2000, 28, 5-11.		144
121	Pharmacology of the receptors for the phorbol ester tumor promoters. Biochemical Pharmacology, 2000, 60, 1417-1424.	4.4	68
122	Involvement of Protein Kinase C δ (PKCÎ) in Phorbol Ester-induced Apoptosis in LNCaP Prostate Cancer Cells. Journal of Biological Chemistry, 2000, 275, 7574-7582.	3.4	178
123	Stimulation of p38 Mitogen-activated Protein Kinase Is an Early Regulatory Event for the Cadmium-induced Apoptosis in Human Promonocytic Cells. Journal of Biological Chemistry, 2000, 275, 11418-11424.	3.4	166
124	Recombinant C1b domain of PKCl̂´ triggers meiotic maturation upon microinjection inXenopus laevisoocytes. FEBS Letters, 2000, 483, 27-32.	2.8	8
125	Atypical Protein Kinase C-Â Stimulates Thyrotropin-Independent Proliferation in Rat Thyroid Cells. Endocrinology, 2000, 141, 146-152.	2.8	7
126	New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB Journal, 1999, 13, 1658-1676.	0.5	561

#	Article	IF	CITATIONS
127	Arachidonic Acid in Platelet Microparticles Up-regulates Cyclooxygenase-2-dependent Prostaglandin Formation via a Protein Kinase C/Mitogen-activated Protein Kinase-dependent Pathway. Journal of Biological Chemistry, 1999, 274, 7545-7556.	3.4	206
128	Biochemical and immunological studies of protein kinase C from Trypanosoma cruzi. International Journal for Parasitology, 1999, 29, 981-989.	3.1	21
129	β2-Chimaerin Is a High Affinity Receptor for the Phorbol Ester Tumor Promoters. Journal of Biological Chemistry, 1997, 272, 26488-26496.	3.4	83
130	Molecular Modeling and Site-Directed Mutagenesis Studies of a Phorbol Ester-Binding Site in Protein Kinase C. Journal of Medicinal Chemistry, 1996, 39, 2541-2553.	6.4	46
131	Phosphorylation Specificities of Protein Kinase C Isozymes for Bovine Cardiac Troponin I and Troponin T and Sites within These Proteins and Regulation of Myofilament Properties. Journal of Biological Chemistry, 1996, 271, 23277-23283.	3.4	163
132	Residues in the Second Cysteine-rich Region of Protein Kinase C δ Relevant to Phorbol Ester Binding as Revealed by Site-directed Mutagenesis. Journal of Biological Chemistry, 1995, 270, 21852-21859.	3.4	143
133	Characterization of the Cysteine-rich Region of the Caenorhabditiselegans Protein Unc-13 as a High Affinity Phorbol Ester Receptor. Journal of Biological Chemistry, 1995, 270, 10777-10783.	3.4	78
134	Low Affinity Binding of Phorbol Esters to Protein Kinase C and Its Recombinant Cysteine-rich Region in the Absence of Phospholipids. Journal of Biological Chemistry, 1995, 270, 14679-14684.	3.4	58
135	Inside-outside stereoisomerism. VII. Methodology for the Synthesis of 3-Oxygenated Ingenanes. The First Ingenol Analogs with High Affinity for Protein Kinase C. Journal of Organic Chemistry, 1995, 60, 1381-1390.	3.2	20
136	Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell, 1995, 81, 917-924.	28.9	669
137	Conformationally constrained analogues of diacylglycerol. 6. Changes in PK-C binding affinity for 3-O-acyl-2-deoxy-L-ribonolactones bearing different acyl chains Bioorganic and Medicinal Chemistry Letters, 1994, 4, 355-360.	2.2	11
138	Conformationally constrained analogues of diacylglycerol (DAG). 3. Interaction of α-alkyl-γ-lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1101-1106.	2.2	10
139	Conformationally constrained analogues of diacylglycerol (DAG). 4. Interaction of α-alkylidene-γ-lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1107-1110.	2.2	7
140	Synthesis of ingenol analogs wth affinity for protein kinase C. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 577-580.	2.2	24
141	Conformationally constrained analogues of diacylglycerol (DAG)-II. Differential interaction of δ-lactones and γ-lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry, 1993, 1, 119-123.	3.0	8
142	Synthesis of two rigid diacylglycerol analogues having a perhydro furo[3,2-b]furan bis-Î ³ -butyrolactone skeleton. 3 Tetrahedron Letters, 1993, 34, 4317-4320.	1.4	6
143	Beta-adrenoceptor desensitization by clenbuterol in rat uterus. General Pharmacology, 1993, 24, 769-773.	0.7	5
144	The cDNA sequence, expression pattern and protein characteristics of mouse protein kinase C-ζ. Gene, 1992, 122, 305-311.	2.2	53

#	Article	IF	CITATIONS
145	Conformationally constrained analogs of diacylglycerol. Interaction of .gammalactones with the phorbol ester receptor of protein kinase C. Journal of the American Chemical Society, 1992, 114, 1059-1070.	13.7	54
146	Pressor Response Induced by Clenbuterol Treatment in Immobilized Normotensive Rats. Journal of Cardiovascular Pharmacology, 1989, 13, 793-798.	1.9	0