Marcelo G Kazanietz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1810705/publications.pdf

Version: 2024-02-01

47006 43889 9,209 146 47 citations h-index papers

g-index 152 152 152 9177 docs citations times ranked citing authors all docs

91

#	Article	IF	CITATIONS
1	Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 2007, 7, 281-294.	28.4	865
2	Crystal structure of the Cys2 activator-binding domain of protein kinase $\hat{\text{Cl}}$ in complex with phorbol ester. Cell, 1995, 81, 917-924.	28.9	669
3	New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB Journal, 1999, 13, 1658-1676.	0.5	561
4	C1 domains exposed: From diacylglycerol binding to protein–protein interactions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 827-837.	2.4	258
5	Protein Kinase C Promotes Apoptosis in LNCaP Prostate Cancer Cells through Activation of p38 MAPK and Inhibition of the Akt Survival Pathway. Journal of Biological Chemistry, 2003, 278, 33753-33762.	3.4	221
6	Novel "Nonkinase―Phorbol Ester Receptors: The C1 Domain Connection. Molecular Pharmacology, 2002, 61, 759-767.	2.3	212
7	Arachidonic Acid in Platelet Microparticles Up-regulates Cyclooxygenase-2-dependent Prostaglandin Formation via a Protein Kinase C/Mitogen-activated Protein Kinase-dependent Pathway. Journal of Biological Chemistry, 1999, 274, 7545-7556.	3.4	206
8	Divergence and complexities in DAG signaling: looking beyond PKC. Trends in Pharmacological Sciences, 2003, 24, 602-608.	8.7	204
9	Identification of the Rac-GEF P-Rex1 as an Essential Mediator of ErbB Signaling in Breast Cancer. Molecular Cell, 2010, 40, 877-892.	9.7	194
10	Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle, 2010, 9, 570-579.	2.6	190
11	CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond. Frontiers in Endocrinology, 2019, 10, 471.	3.5	183
12	Involvement of Protein Kinase C $\hat{\Gamma}$ (PKC $\hat{\Gamma}$) in Phorbol Ester-induced Apoptosis in LNCaP Prostate Cancer Cells. Journal of Biological Chemistry, 2000, 275, 7574-7582.	3.4	178
13	Stimulation of p38 Mitogen-activated Protein Kinase Is an Early Regulatory Event for the Cadmium-induced Apoptosis in Human Promonocytic Cells. Journal of Biological Chemistry, 2000, 275, 11418-11424.	3.4	166
14	Phosphorylation Specificities of Protein Kinase C Isozymes for Bovine Cardiac Troponin I and Troponin T and Sites within These Proteins and Regulation of Myofilament Properties. Journal of Biological Chemistry, 1996, 271, 23277-23283.	3 . 4	163
15	Rac signaling in breast cancer: A tale of GEFs and GAPs. Cellular Signalling, 2012, 24, 353-362.	3.6	162
16	The Rac GTPase in Cancer: From Old Concepts to New Paradigms. Cancer Research, 2017, 77, 5445-5451.	0.9	155
17	Eyes wide shut: Protein kinase C isozymes are not the only receptors for the phorbol ester tumor promoters., 2000, 28, 5-11.		144
18	Residues in the Second Cysteine-rich Region of Protein Kinase C δRelevant to Phorbol Ester Binding as Revealed by Site-directed Mutagenesis. Journal of Biological Chemistry, 1995, 270, 21852-21859.	3.4	143

#	Article	IF	CITATIONS
19	Structural Mechanism for Lipid Activation of the Rac-Specific GAP, Î ² 2-Chimaerin. Cell, 2004, 119, 407-418.	28.9	133
20	Regulation of the Neuronal Glutamate Transporter Excitatory Amino Acid Carrier-1 (EAAC1) by Different Protein Kinase C Subtypes. Molecular Pharmacology, 2002, 62, 901-910.	2.3	96
21	Characterization of the Rac-GAP (Rac-GTPase-activating protein) activity of β2-chimaerin, a  non-protein kinase C' phorbol ester receptor. Biochemical Journal, 2003, 375, 313-321.	3.7	90
22	Diacylglycerol (DAG)-lactones, a New Class of Protein Kinase C (PKC) Agonists, Induce Apoptosis in LNCaP Prostate Cancer Cells by Selective Activation of PKCα. Journal of Biological Chemistry, 2002, 277, 645-655.	3.4	88
23	Î ² 2-Chimaerin Is a High Affinity Receptor for the Phorbol Ester Tumor Promoters. Journal of Biological Chemistry, 1997, 272, 26488-26496.	3.4	83
24	Essential Role for Rac in Heregulin \hat{l}^21 Mitogenic Signaling: a Mechanism That Involves Epidermal Growth Factor Receptor and Is Independent of ErbB4. Molecular and Cellular Biology, 2006, 26, 831-842.	2.3	82
25	Phorbol Ester-induced Apoptosis in Prostate Cancer Cells via Autocrine Activation of the Extrinsic Apoptotic Cascade. Journal of Biological Chemistry, 2005, 280, 38982-38991.	3.4	80
26	Phorbol Ester-induced G1 Phase Arrest Selectively Mediated by Protein Kinase Cl´-dependent Induction of p21. Journal of Biological Chemistry, 2005, 280, 33926-33934.	3.4	80
27	Characterization of the Cysteine-rich Region of the Caenorhabditiselegans Protein Unc-13 as a High Affinity Phorbol Ester Receptor. Journal of Biological Chemistry, 1995, 270, 10777-10783.	3.4	78
28	Chimaerins: GAPs that bridge diacylglycerol signalling and the small G-protein Rac. Biochemical Journal, 2007, 403, 1-12.	3.7	77
29	Phospholipase CÎ ² Is Critical for T Cell Chemotaxis. Journal of Immunology, 2007, 179, 2223-2227.	0.8	75
30	$\hat{l}\pm6\hat{l}^24$ integrin activates Rac-dependent p21-activated kinase 1 to drive NF- \hat{l}^9B -dependent resistance to apoptosis in 3D mammary acini. Journal of Cell Science, 2007, 120, 3700-3712.	2.0	75
31	Protein kinase C in cancer: The top five unanswered questions. Molecular Carcinogenesis, 2017, 56, 1531-1542.	2.7	75
32	Rac-GAP-dependent Inhibition of Breast Cancer Cell Proliferation by \hat{l}^2 2-Chimerin. Journal of Biological Chemistry, 2005, 280, 24363-24370.	3.4	74
33	The RacGAP \hat{I}^2 2-Chimaerin Selectively Mediates Axonal Pruning in the Hippocampus. Cell, 2012, 149, 1594-1606.	28.9	73
34	Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell Reports, 2017, 19, 375-388.	6.4	72
35	Pharmacology of the receptors for the phorbol ester tumor promoters. Biochemical Pharmacology, 2000, 60, 1417-1424.	4.4	68
36	Lysophosphatidic Acid Promotes Survival and Differentiation of Rat Schwann Cells. Journal of Biological Chemistry, 2003, 278, 9585-9591.	3.4	67

#	Article	IF	CITATIONS
37	Protein Kinase C Isozymes, Novel Phorbol Ester Receptors and Cancer Chemotherapy. Current Pharmaceutical Design, 2001, 7, 1725-44.	1.9	62
38	Phorbol Esters and Related Analogs Regulate the Subcellular Localization of \hat{l}^2 2-Chimaerin, a Non-protein Kinase C Phorbol Ester Receptor. Journal of Biological Chemistry, 2001, 276, 18303-18312.	3.4	62
39	Activation of Nuclear Factor κB (NF-κB) in Prostate Cancer Is Mediated by Protein Kinase C Ϊμ (PKCΪμ). Journal of Biological Chemistry, 2012, 287, 37570-37582.	3.4	61
40	Low Affinity Binding of Phorbol Esters to Protein Kinase C and Its Recombinant Cysteine-rich Region in the Absence of Phospholipids. Journal of Biological Chemistry, 1995, 270, 14679-14684.	3.4	58
41	Chimaerins, Novel Non-protein Kinase C Phorbol Ester Receptors, Associate with Tmp21-I (p23). Journal of Biological Chemistry, 2002, 277, 4541-4550.	3.4	57
42	PKC Delta (PKCÎ) Promotes Tumoral Progression of Human Ductal Pancreatic Cancer. Pancreas, 2010, 39, e31-e41.	1.1	56
43	Conformationally constrained analogs of diacylglycerol. Interaction of .gammalactones with the phorbol ester receptor of protein kinase C. Journal of the American Chemical Society, 1992, 114, 1059-1070.	13.7	54
44	Protein Kinase C and Prostate Carcinogenesis: Targeting the Cell Cycle and Apoptotic Mechanisms. Current Drug Targets, 2004, 5, 431-443.	2.1	54
45	The cDNA sequence, expression pattern and protein characteristics of mouse protein kinase C-ζ. Gene, 1992, 122, 305-311.	2.2	53
46	Protein Kinase C $\hat{\Gamma}$ Stimulates Apoptosis by Initiating G1 Phase Cell Cycle Progression and S Phase Arrest. Journal of Biological Chemistry, 2005, 280, 32107-32114.	3.4	53
47	Targeting the coronavirus nucleocapsid protein through GSK-3 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
48	S-Phase-specific Activation of PKC \hat{l} ± Induces Senescence in Non-small Cell Lung Cancer Cells. Journal of Biological Chemistry, 2008, 283, 5466-5476.	3.4	50
49	Rho GEFs and Cancer: Linking Gene Expression and Metastatic Dissemination. Science Signaling, 2012, 5, pe43.	3.6	50
50	Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon. PLoS ONE, 2012, 7, e31714.	2.5	50
51	Targeting protein kinase C and "non-kinase―phorbol ester receptors: Emerging concepts and therapeutic implications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 296-304.	2.3	49
52	PKC isozymes and diacylglycerol-regulated proteins as effectors of growth factor receptors. Growth Factors, 2005, 23, 245-252.	1.7	49
53	Phospholipase $C\hat{l}^3$ /diacylglycerol-dependent activation of \hat{l}^2 2-chimaerin restricts EGF-induced Rac signaling. EMBO Journal, 2006, 25, 2062-2074.	7.8	48
54	Heregulin \hat{l}^21 promotes breast cancer cell proliferation through Rac/ERK-dependent induction of cyclin D1 and p21Cip1. Biochemical Journal, 2008, 410, 167-175.	3.7	48

#	Article	IF	Citations
55	Transgenic overexpression of PKClμ in the mouse prostate induces preneoplastic lesions. Cell Cycle, 2011, 10, 268-277.	2.6	48
56	COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene, 2018, 37, 4735-4749.	5.9	48
57	Molecular Modeling and Site-Directed Mutagenesis Studies of a Phorbol Ester-Binding Site in Protein Kinase C. Journal of Medicinal Chemistry, 1996, 39, 2541-2553.	6.4	46
58	Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α. Molecular and Cellular Biology, 2016, 36, 2011-2026.	2.3	46
59	Bryostatin 1 Inhibits Phorbol Ester-Induced Apoptosis in Prostate Cancer Cells by Differentially Modulating Protein Kinase C (PKC) δTranslocation and Preventing PKCδ-Mediated Release of Tumor Necrosis Factor-α. Molecular Pharmacology, 2010, 78, 325-332.	2.3	45
60	Molecular Mechanisms of Protein Kinase C-induced Apoptosis in Prostate Cancer Cells. BMB Reports, 2005, 38, 639-645.	2.4	44
61	Constitutive ERK1/2 Activation in Esophagogastric Rib Bone Marrow Micrometastatic Cells Is MEK-independent. Journal of Biological Chemistry, 2001, 276, 15537-15546.	3.4	43
62	ROCK Mediates Phorbol Ester-induced Apoptosis in Prostate Cancer Cells via p21Cip1 Up-regulation and JNK. Journal of Biological Chemistry, 2009, 284, 29365-29375.	3.4	41
63	Cucurbitacin I Inhibits Rac1 Activation in Breast Cancer Cells by a Reactive Oxygen Species-Mediated Mechanism and Independently of Janus Tyrosine Kinase 2 and P-Rex1. Molecular Pharmacology, 2013, 83, 1141-1154.	2.3	41
64	Differential Regulation of Gene Expression by Protein Kinase C Isozymes as Determined by Genome-wide Expression Analysis. Journal of Biological Chemistry, 2011, 286, 11254-11264.	3.4	40
65	Regulation of Prostate Cancer Cell Survival by Protein Kinase Câ^ Involves Bad Phosphorylation and Modulation of the TNFα/JNK Pathway. Journal of Biological Chemistry, 2010, 285, 26033-26040.	3.4	39
66	Inhibition of aggressiveness of metastatic mouse mammary carcinoma cells by the beta2-chimaerin GAP domain. Cancer Research, 2003, 63, 2284-91.	0.9	39
67	Androgens Regulate Protein Kinase \widehat{Cl} Transcription and Modulate Its Apoptotic Function in Prostate Cancer Cells. Cancer Research, 2006, 66, 11792-11801.	0.9	38
68	Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 392-408.	4.9	37
69	A Host GPCR Signaling Network Required for the Cytolysis of Infected Cells Facilitates Release of Apicomplexan Parasites. Cell Host and Microbe, 2013, 13, 15-28.	11.0	37
70	PKCϵ Is an Essential Mediator of Prostate Cancer Bone Metastasis. Molecular Cancer Research, 2015, 13, 1336-1346.	3.4	36
71	Phosphorylation of the Catalytic Subunit of Rat Renal Na+,K+-ATPase by Classical PKC Isoforms. Archives of Biochemistry and Biophysics, 2001, 388, 74-80.	3.0	35
72	p23/Tmp21 Associates with Protein Kinase \hat{Cl} (PKC \hat{l}) and Modulates Its Apoptotic Function. Journal of Biological Chemistry, 2011, 286, 15821-15831.	3.4	35

#	Article	IF	CITATIONS
73	Atypical protein kinase $C \cdot \hat{I}_q$ modulates clonogenicity, motility, and secretion of proteolytic enzymes in murine mammary cells. Molecular Carcinogenesis, 2005, 42, 29-39.	2.7	34
74	Rational design, synthesis, and biological evaluation of rigid pyrrolidone analogues as potential inhibitors of prostate cancer cell growth. Bioorganic and Medicinal Chemistry Letters, $2001, 11, 955-959$.	2.2	33
75	Cell growth inhibition by all-trans retinoic acid in SKBR-3 breast cancer cells: Involvement of protein kinase C? and extracellular signal-regulated kinase mitogen-activated protein kinase. Molecular Carcinogenesis, 2003, 38, 106-116.	2.7	33
76	Subtype-specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with promoter hypomethylation. Breast Cancer Research, 2014, 16, 441.	5.0	33
77	Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Experimental Cell Research, 2010, 316, 401-411.	2.6	32
78	Benzo[a]pyrene-7,8-dihydrodiol Promotes Checkpoint Activation and G2/M Arrest in Human Bronchoalveolar Carcinoma H358 Cells. Molecular Pharmacology, 2007, 71, 744-750.	2.3	30
79	Protein Kinase C <i>î±</i> Mediates Erlotinib Resistance in Lung Cancer Cells. Molecular Pharmacology, 2015, 87, 832-841.	2.3	30
80	The zebrafish homologue of mammalian chimerin Rac-GAPs is implicated in epiboly progression during development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5373-5378.	7.1	28
81	\hat{l}^2 2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells. Journal of Cell Science, 2006, 119, 141-152.	2.0	28
82	Transcriptional Regulation of Oncogenic Protein Kinase CÏ μ (PKCÏ μ) by STAT1 and Sp1 Proteins. Journal of Biological Chemistry, 2014, 289, 19823-19838.	3.4	27
83	Identification of an Autoinhibitory Mechanism That Restricts C1 Domain-mediated Activation of the Rac-GAP α2-Chimaerin. Journal of Biological Chemistry, 2008, 283, 35247-35257.	3.4	26
84	The role of Rac in tumor susceptibility and disease progression: from biochemistry to the clinic. Biochemical Society Transactions, 2018, 46, 1003-1012.	3.4	26
85	PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Frontiers in Oncology, 2019, 9, 1323.	2.8	26
86	Discovery of a small-molecule protein kinase CÎ-selective activator with promising application in colon cancer therapy. Cell Death and Disease, 2018, 9, 23.	6.3	25
87	Regulation of Transcriptional Networks by PKC Isozymes: Identification of c-Rel as a Key Transcription Factor for PKC-Regulated Genes. PLoS ONE, 2013, 8, e67319.	2.5	25
88	Synthesis of ingenol analogs wth affinity for protein kinase C. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 577-580.	2.2	24
89	NFκB-Independent Signaling to the Cyclin D1 Gene by Rac. Cell Cycle, 2007, 6, 1115-1121.	2.6	23
90	PKCâ€mediated secretion of death factors in LNCaP prostate cancer cells is regulated by androgens. Molecular Carcinogenesis, 2009, 48, 187-195.	2.7	23

#	Article	IF	Citations
91	Opposite effects of protein kinase C beta1 ($PKC\hat{l}^21$) and $PKC\hat{l}\mu$ in the metastatic potential of a breast cancer murine model. Breast Cancer Research and Treatment, 2009, 118, 469-480.	2.5	23
92	p23/Tmp21 Differentially Targets the Rac-GAP \hat{I}^2 2-Chimaerin and Protein Kinase C via Their C1 Domains. Molecular Biology of the Cell, 2010, 21, 1398-1408.	2.1	23
93	C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38 $\hat{l}\pm$ activation, while it impairs tumor growth through p38 $\hat{l}\pm$ -independent mechanisms. Oncotarget, 2016, 7, 45060-45078.	1.8	23
94	Characterization of AJH-836, a diacylglycerol-lactone with selectivity for novel PKC isozymes. Journal of Biological Chemistry, 2018, 293, 8330-8341.	3.4	22
95	Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Scientific Reports, 2019, 9, 6041.	3.3	22
96	Biochemical and immunological studies of protein kinase C from Trypanosoma cruzi. International Journal for Parasitology, 1999, 29, 981-989.	3.1	21
97	Chapter 7 Phorbol Ester–Induced Apoptosis and Senescence in Cancer Cell Models. Methods in Enzymology, 2008, 446, 123-139.	1.0	21
98	Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 118.	3.7	21
99	Inside-outside stereoisomerism. VII. Methodology for the Synthesis of 3-Oxygenated Ingenanes. The First Ingenol Analogs with High Affinity for Protein Kinase C. Journal of Organic Chemistry, 1995, 60, 1381-1390.	3.2	20
100	Distinctive requirement of PKCl $\hat{\mu}$ in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene, 2019, 38, 5396-5412.	5.9	20
101	FARP1, ARHGEF39, and TIAM2 are essential receptor tyrosine kinase effectors for Rac1-dependent cell motility in human lung adenocarcinoma. Cell Reports, 2021, 37, 109905.	6.4	20
102	PKC ϵ Is Required for KRAS-Driven Lung Tumorigenesis. Cancer Research, 2020, 80, 5166-5173.	0.9	19
103	Interaction of the novel anthracycline antitumor agent N-benzyladriamycin-14-valerate with the C1-regulatory domain of protein kinase C: structural requirements, isoform specificity, and correlation with drug cytotoxicity. Molecular Cancer Therapeutics, 2002, 1, 483-92.	4.1	19
104	Nuclear PKC \hat{I} -ECT2-Rac1 and Ribosome Biogenesis: A Novel Axis in Lung Tumorigenesis. Cancer Cell, 2017, 31, 167-169.	16.8	18
105	A Novel Cross-talk in Diacylglycerol Signaling. Journal of Biological Chemistry, 2010, 285, 16931-16941.	3.4	17
106	Differential signaling of the GnRH receptor in pituitary gonadotrope cell lines and prostate cancer cell lines. Molecular and Cellular Endocrinology, 2013, 369, 107-118.	3.2	17
107	î"Np63α suppresses cells invasion by downregulating PKCγ/Rac1 signaling through miR-320a. Cell Death and Disease, 2019, 10, 680.	6.3	17
108	The PKC universe keeps expanding: From cancer initiation to metastasis. Advances in Biological Regulation, 2020, 78, 100755.	2.3	16

#	Article	IF	Citations
109	Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease. American Journal of Physiology - Cell Physiology, 2020, 319, C877-C884.	4.6	16
110	Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Science Signaling, 2022, 15, eabo0264.	3.6	16
111	Molecular Models of N-Benzyladriamycin-14-valerate (AD 198) in Complex with the Phorbol Ester-Binding C1b Domain of Protein Kinase C-δ. Journal of Medicinal Chemistry, 2001, 44, 1028-1034.	6.4	15
112	Coordinated activation of the Rac-GAP \hat{l}^2 2-chimaerin by an atypical proline-rich domain and diacylglycerol. Nature Communications, 2013, 4, 1849.	12.8	13
113	P-REX1-Independent, Calcium-Dependent RAC1 Hyperactivation in Prostate Cancer. Cancers, 2020, 12, 480.	3.7	13
114	The P-Rex1/Rac signaling pathway as a point of convergence for HER/ErbB receptor and GPCR responses. Small GTPases, 2018, 9, 297-303.	1.6	12
115	Characterization of a P-Rex1 gene signature in breast cancer cells. Oncotarget, 2016, 7, 51335-51348.	1.8	12
116	Conformationally constrained analogues of diacylglycerol. 6. Changes in PK-C binding affinity for 3-O-acyl-2-deoxy-L-ribonolactones bearing different acyl chains Bioorganic and Medicinal Chemistry Letters, 1994, 4, 355-360.	2.2	11
117	Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. Journal of Biological Chemistry, 2020, 295, 13698-13710.	3.4	11
118	PKCl $\hat{\mu}$ regulates Rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases, 2021, 12, 202-208.	1.6	11
119	Conformationally constrained analogues of diacylglycerol (DAG). 3. Interaction of $\hat{l}\pm$ -alkyl- \hat{l}^3 -lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1101-1106.	2.2	10
120	Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells. Biochemical Pharmacology, 2004, 67, 1873-1886.	4.4	10
121	Post-transcriptional Destabilization of p21 by Protein Kinase C in Fibroblasts*. Journal of Biological Chemistry, 2006, 281, 38127-38132.	3.4	10
122	Protein kinase C \hat{l} inhibits the production of proteolytic enzymes in murine mammary cells. Clinical and Experimental Metastasis, 2007, 24, 513-520.	3.3	10
123	Protein Kinase C Regulation: C1 Meets C-tail. Structure, 2011, 19, 144-146.	3.3	10
124	\hat{I}^2 3-Chimaerin, a novel member of the chimaerin Rac-GAP family. Molecular Biology Reports, 2014, 41, 2067-2076.	2.3	10
125	P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer. Oncotarget, 2018, 9, 28612-28624.	1.8	9
126	Conformationally constrained analogues of diacylglycerol (DAG)-II. Differential interaction of \hat{l} -lactones and \hat{l} -lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry, 1993, 1, 119-123.	3.0	8

#	Article	IF	CITATIONS
127	Recombinant C1b domain of PKCδ triggers meiotic maturation upon microinjection inXenopus laevisoocytes. FEBS Letters, 2000, 483, 27-32.	2.8	8
128	Conformationally constrained analogues of diacylglycerol (DAG). 4. Interaction of \hat{l}_{\pm} -alkylidene- \hat{l}_{3} -lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1107-1110.	2.2	7
129	Rac1 Takes Center Stage in Pancreatic Cancer and Ulcerative Colitis: Quantity Matters. Gastroenterology, 2011, 141, 427-430.	1.3	7
130	Atypical Protein Kinase C-Â Stimulates Thyrotropin-Independent Proliferation in Rat Thyroid Cells. Endocrinology, 2000, 141, 146-152.	2.8	7
131	Regulation of vascular smooth muscle proliferation and migration by beta2-chimaerin, a non-protein kinase C phorbol ester receptor. International Journal of Molecular Medicine, 2006, 17, 559-66.	4.0	7
132	Synthesis of two rigid diacylglycerol analogues having a perhydro furo [3,2-b] furan bis- \hat{l}^3 -butyrolactone skeleton. 3 Tetrahedron Letters, 1993, 34, 4317-4320.	1.4	6
133	Modulation of Pancreatic Tumor Potential by Overexpression of Protein Kinase C \hat{l}^21 . Pancreas, 2013, 42, 1060-1069.	1.1	6
134	Activating <i>RAC1</i> variants in the switch II region cause a developmental syndrome and alter neuronal morphology. Brain, 2022, 145, 4232-4245.	7.6	6
135	Beta-adrenoceptor desensitization by clenbuterol in rat uterus. General Pharmacology, 1993, 24, 769-773.	0.7	5
136	Design, Synthesis, and Characterization of Novel <i>sn</i> li>-1 Heterocyclic DAG-Lactones as PKC Activators. Journal of Medicinal Chemistry, 2021, 64, 11418-11431.	6.4	5
137	Phorbol Esters as Probes for the Study of Protein Kinase C Function. , 2003, 233, 423-440.		4
138	5-oxo-ETE activates migration of H295R adrenocortical cells via MAPK and PKC pathways. Prostaglandins and Other Lipid Mediators, 2019, 144, 106346.	1.9	4
139	Identification of a truncated \hat{I}^21 -chimaerin variant that inactivates nuclear Rac1. Journal of Biological Chemistry, 2020, 295, 1300-1314.	3.4	3
140	Quantification of ruffle area and dynamics in live or fixed lung adenocarcinoma cells. STAR Protocols, 2022, 3, 101437.	1.2	3
141	DAG signaling taught us a lesson: what diverges can converge. Blood, 2003, 102, 1152-1152.	1.4	2
142	Identification of a truncated \hat{l}^21 -chimaerin variant that inactivates nuclear Rac1. Journal of Biological Chemistry, 2020, 295, 1300-1314.	3.4	2
143	Nonredundant Rac-GEF control of actin cytoskeleton reorganization. Trends in Cell Biology, 2022, , .	7.9	2
144	The anti-Rac1-GTP antibody and the detection of active Rac1: a tool with a fundamental flaw. Small GTPases, 2022, 13, 136-140.	1.6	1

#	Article	lF	CITATIONS
145	Pharmacological Probes for Protein Kinase C: An Introduction. , 2003, 233, 389-396.		O
146	Pressor Response Induced by Clenbuterol Treatment in Immobilized Normotensive Rats. Journal of Cardiovascular Pharmacology, 1989, 13, 793-798.	1.9	0