Emanuele Di Angelantonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1809576/publications.pdf

Version: 2024-02-01

143 papers 38,527 citations

69 h-index 137 g-index

169 all docs

169 docs citations

169 times ranked 48129 citing authors

#	Article	IF	Citations
1	2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. European Heart Journal, 2021, 42, 3227-3337.	2.2	2,517
2	Major Lipids, Apolipoproteins, and Risk of Vascular Disease. JAMA - Journal of the American Medical Association, 2009, 302, 1993.	7.4	2,205
3	Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. New England Journal of Medicine, 2011, 364, 829-841.	27.0	2,182
4	C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet, The, 2010, 375, 132-140.	13.7	1,946
5	Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet, The, 2016, 388, 776-786.	13.7	1,793
6	Lipoprotein(a) Concentration and the Risk of Coronary Heart Disease, Stroke, and Nonvascular Mortality. JAMA - Journal of the American Medical Association, 2009, 302, 412.	7.4	1,279
7	The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell, 2016, 167, 1415-1429.e19.	28.9	1,052
8	Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk. Annals of Internal Medicine, 2014, 160, 398.	3.9	997
9	Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet, The, 2011, 377, 1085-1095.	13.7	941
10	C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction. New England Journal of Medicine, 2012, 367, 1310-1320.	27.0	909
11	Prevalence of Depression and Depressive Symptoms Among Resident Physicians. JAMA - Journal of the American Medical Association, 2015, 314, 2373.	7.4	886
12	Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599â€^912 current drinkers in 83 prospective studies. Lancet, The, 2018, 391, 1513-1523.	13.7	858
13	Genetic Associations with Valvular Calcification and Aortic Stenosis. New England Journal of Medicine, 2013, 368, 503-512.	27.0	767
14	Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet, The, 2012, 379, 1205-1213.	13.7	668
15	Association of Apolipoprotein E Genotypes With Lipid Levels and Coronary Risk. JAMA - Journal of the American Medical Association, 2007, 298, 1300.	7.4	655
16	Association of Cardiometabolic Multimorbidity With Mortality. JAMA - Journal of the American Medical Association, 2015, 314, 52.	7.4	624
17	Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet, The, 2010, 375, 1634-1639.	13.7	606
18	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	21.4	571

#	Article	IF	Citations
19	Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults. Journal of the American College of Cardiology, 2018, 72, 1883-1893.	2.8	557
20	World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health, 2019, 7, e1332-e1345.	6.3	554
21	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	21.4	549
22	Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet, The, 2010, 375, 1536-1544.	13.7	544
23	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
24	Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. Circulation, 2018, 138, 345-355.	1.6	506
25	Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nature Genetics, 2018, 50, 1514-1523.	21.4	497
26	The Age-Specific Quantitative Effects of Metabolic Risk Factors on Cardiovascular Diseases and Diabetes: A Pooled Analysis. PLoS ONE, 2013, 8, e65174.	2.5	496
27	SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. European Heart Journal, 2021, 42, 2439-2454.	2.2	491
28	Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. European Heart Journal, 2014, 35, 578-589.	2.2	483
29	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	21.4	470
30	Association of Triglyceride-Lowering <i>LPL</i> Variants and LDL-C–Lowering <i>LDLR</i> Variants With Risk of Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2019, 321, 364.	7.4	460
31	Association of Cholesteryl Ester Transfer Protein Genotypes With CETP Mass and Activity, Lipid Levels, and Coronary Risk. JAMA - Journal of the American Medical Association, 2008, 299, 2777.	7.4	443
32	Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351, 1166-1171.	12.6	438
33	Association of <i>LPA</i> Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies. JAMA Cardiology, 2018, 3, 619.	6.1	428
34	The Polygenic and Monogenic Basis of Blood Traits and Diseases. Cell, 2020, 182, 1214-1231.e11.	28.9	388
35	Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell, 2020, 182, 1198-1213.e14.	28.9	353
36	Lipid-Related Markers and Cardiovascular Disease Prediction. JAMA - Journal of the American Medical Association, 2012, 307, 2499-506.	7.4	352

#	Article	lF	CITATIONS
37	B-Type Natriuretic Peptides and Cardiovascular Risk. Circulation, 2009, 120, 2177-2187.	1.6	340
38	BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respiratory Medicine, the, 2016, 4, 129-137.	10.7	307
39	Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE, 2019, 14, e0213653.	2.5	301
40	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286
41	Apolipoprotein(a) Isoforms and the Risk of Vascular Disease. Journal of the American College of Cardiology, 2010, 55, 2160-2167.	2.8	276
42	Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ: British Medical Journal, 2018, 362, k3310.	2.3	272
43	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
44	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	21.4	260
45	Lipoprotein(a) Levels and Risk of Future Coronary Heart Disease <subtitle>Large-Scale Prospective Data</subtitle> . Archives of Internal Medicine, 2008, 168, 598.	3.8	231
46	Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. International Journal of Epidemiology, 2012, 41, 1419-1433.	1.9	230
47	Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45â€`000 donors. Lancet, The, 2017, 390, 2360-2371.	13.7	222
48	2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. European Journal of Preventive Cardiology, 2022, 29, 5-115.	1.8	220
49	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	21.4	218
50	Mendelian Randomization Study of <i>ACLY</i> and Cardiovascular Disease. New England Journal of Medicine, 2019, 380, 1033-1042.	27.0	216
51	High-Sensitivity Cardiac Troponin Concentration and Risk of First-EverÂCardiovascular Outcomes inÂ154,052 Participants. Journal of the American College of Cardiology, 2017, 70, 558-568.	2.8	213
52	Chronic kidney disease and risk of major cardiovascular disease and non-vascular mortality: prospective population based cohort study. BMJ: British Medical Journal, 2010, 341, c4986-c4986.	2.3	212
53	SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions. European Heart Journal, 2021, 42, 2455-2467.	2.2	210
54	Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. European Heart Journal, 2018, 39, 397-406.	2.2	209

#	Article	IF	Citations
55	Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurology, The, 2017, 16, 898-907.	10.2	191
56	Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiology, 2019, 4, 163.	6.1	187
57	Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease. JAMA - Journal of the American Medical Association, 2014, 311, 1225.	7.4	179
58	Association Between Depressive Symptoms and Incident Cardiovascular Diseases. JAMA - Journal of the American Medical Association, 2020, 324, 2396.	7.4	152
59	Polygenic basis and biomedical consequences of telomere length variation. Nature Genetics, 2021, 53, 1425-1433.	21.4	145
60	Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. American Journal of Human Genetics, 2017, 100, 865-884.	6.2	131
61	Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear mendelian randomisation analyses. BMJ: British Medical Journal, 2019, 364, l1042.	2.3	125
62	Asymmetric Dimethylarginine and Cardiovascular Risk: Systematic Review and Metaâ€Analysis of 22 Prospective Studies. Journal of the American Heart Association, 2015, 4, e001833.	3.7	123
63	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine, 2021, 27, 668-676.	30.7	120
64	The INTERVAL trial to determine whether intervals between blood donations can be safely and acceptably decreased to optimise blood supply: study protocol for a randomised controlled trial. Trials, 2014, 15, 363.	1.6	112
65	Consumption of Meat, Fish, Dairy Products, and Eggs and Risk of Ischemic Heart Disease. Circulation, 2019, 139, 2835-2845.	1.6	103
66	Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. European Heart Journal, 2019, 40, 621-631.	2.2	97
67	Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses. PLoS Medicine, 2021, 18, e1003498.	8.4	95
68	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	21.4	91
69	Hemostatic Factors and Risk of Coronary Heart Disease in General Populations: New Prospective Study and Updated Meta-Analyses. PLoS ONE, 2013, 8, e55175.	2.5	91
70	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	21.4	89
71	Renal Function and Risk of Coronary Heart Disease in General Populations: New Prospective Study and Systematic Review. PLoS Medicine, 2007, 4, e270.	8.4	85
72	Genetic Determinants of Lipids and Cardiovascular Disease Outcomes. Circulation Genomic and Precision Medicine, 2019, 12, e002711.	3.6	83

#	Article	IF	CITATIONS
73	Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry, 2020, 25, 2392-2409.	7.9	83
74	Validation of a Genome-Wide PolygenicÂScore for Coronary ArteryÂDisease inÂSouth Asians. Journal of the American College of Cardiology, 2020, 76, 703-714.	2.8	76
7 5	A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Communications Biology, 2021, 4, 156.	4.4	72
76	Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematology,the, 2018, 5, e241-e251.	4.6	70
77	Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes: The EPIC-InterAct Study. Diabetes Care, 2016, 39, 572-581.	8.6	65
78	N-Terminal Pro-Brain Natriuretic Peptide Is a More Useful Predictor of Cardiovascular Disease Risk Than C-Reactive Protein in Older Men With and Without Pre-Existing Cardiovascular Disease. Journal of the American College of Cardiology, 2011, 58, 56-64.	2.8	64
79	Left Ventricular Mass and the Risk of Sudden Cardiac Death: A Populationâ€Based Study. Journal of the American Heart Association, 2014, 3, e001285.	3.7	63
80	The associations of major foods and fibre with risks of ischaemic and haemorrhagic stroke: a prospective study of 418Â329 participants in the EPIC cohort across nine European countries. European Heart Journal, 2020, 41, 2632-2640.	2.2	60
81	Evaluation of Effectiveness and Costâ€Effectiveness of a Clinical Decision Support System in Managing Hypertension in Resource Constrained Primary Health Care Settings: Results From a Cluster Randomized Trial. Journal of the American Heart Association, 2015, 4, e001213.	3.7	58
82	Parity, breastfeeding and risk of coronary heart disease: A pan-European case–cohort study. European Journal of Preventive Cardiology, 2016, 23, 1755-1765.	1.8	58
83	Prevalence of restless legs syndrome and associated factors in an otherwise healthy population: results from the Danish Blood Donor Study. Sleep Medicine, 2017, 36, 55-61.	1.6	51
84	Association of COVID-19 vaccines $ChAdOx1$ and $BNT162b2$ with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England. PLoS Medicine, 2022, 19, e1003926.	8.4	51
85	High-Sensitivity Cardiac Troponin and New-OnsetÂHeart Failure. JACC: Heart Failure, 2018, 6, 187-197.	4.1	50
86	Assessing Risk Prediction Models Using Individual Participant Data From Multiple Studies. American Journal of Epidemiology, 2014, 179, 621-632.	3.4	47
87	T-Wave Inversion, QRS Duration, and QRS/T Angle as Electrocardiographic Predictors of the Risk for Sudden CardiacÂDeath. American Journal of Cardiology, 2014, 113, 1178-1183.	1.6	43
88	Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nature Metabolism, 2021, 3, 1476-1483.	11.9	43
89	Markers of Inflammation and Risk of Coronary Heart Disease. Disease Markers, 2009, 26, 217-225.	1.3	41
90	Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nature Medicine, 2021, 27, 1564-1575.	30.7	40

#	Article	IF	CITATIONS
91	Estimation of recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular disease: the updated SMART2 algorithm. European Heart Journal, 2022, 43, 1715-1727.	2.2	40
92	Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank. EBioMedicine, 2021, 70, 103485.	6.1	36
93	Effect of communicating phenotypic and genetic risk of coronary heart disease alongside web-based lifestyle advice: the INFORM Randomised Controlled Trial. Heart, 2019, 105, 982-989.	2.9	34
94	Socioeconomic Deprivation and Survival After Heart Transplantation in England. Circulation: Cardiovascular Quality and Outcomes, 2016, 9, 695-703.	2.2	31
95	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	6.7	31
96	Development and validation of a universal blood donor genotyping platform: a multinational prospective study. Blood Advances, 2020, 4, 3495-3506.	5.2	31
97	Effects of adiposity on the human plasma proteome: observational and Mendelian randomisation estimates. International Journal of Obesity, 2021, 45, 2221-2229.	3.4	31
98	Lipoprotein signatures of cholesteryl ester transfer protein and HMG-CoA reductase inhibition. PLoS Biology, 2019, 17, e3000572.	5.6	29
99	GuÃa ESC 2021 sobre la prevenciÃ ³ n de la enfermedad cardiovascular en la práctica clÃnica. Revista Espanola De Cardiologia, 2022, 75, 429.e1-429.e104.	1.2	27
100	Genetic Determinants of Major Blood Lipids in Pakistanis Compared With Europeans. Circulation: Cardiovascular Genetics, 2010, 3, 348-357.	5.1	25
101	The Bangladesh Risk of Acute Vascular Events (BRAVE) Study: objectives and design. European Journal of Epidemiology, 2015, 30, 577-587.	5.7	25
102	Reciprocal congenic lines for a major stroke QTL on rat chromosome 1. Physiological Genomics, 2006, 27, 108-113.	2.3	23
103	Restless legs syndrome is associated with major comorbidities in a population of Danish blood donors. Sleep Medicine, 2018, 45, 124-131.	1.6	23
104	Genetic invalidation of Lp-PLA2 as a therapeutic target: Large-scale study of five functional Lp-PLA2-lowering alleles. European Journal of Preventive Cardiology, 2017, 24, 492-504.	1.8	22
105	Is von Willebrand factor associated with stroke and death at mid-term in patients with non-valvular atrial fibrillation?. Archives of Cardiovascular Diseases, 2018, 111, 357-369.	1.6	22
106	Recruitment and representativeness of blood donors in the INTERVAL randomised trial assessing varying inter-donation intervals. Trials, 2016, 17, 458.	1.6	17
107	Longer-term efficiency and safety of increasing the frequency of whole blood donation (INTERVAL): extension study of a randomised trial of 20†757 blood donors. Lancet Haematology,the, 2019, 6, e510-e520.	4.6	17
108	Accuracy of four lateral flow immunoassays for anti SARS-CoV-2 antibodies: a head-to-head comparative study. EBioMedicine, 2021, 68, 103414.	6.1	17

#	Article	IF	Citations
109	Whole-exome sequencing identifies rare genetic variants associated with human plasma metabolites. American Journal of Human Genetics, 2022, 109, 1038-1054.	6.2	17
110	Variations in hemoglobin measurement and eligibility criteria across blood donation services are associated with differing lowâ€hemoglobin deferral rates: a BEST Collaborative study. Transfusion, 2020, 60, 544-552.	1.6	16
111	Prediction of Cardiovascular Disease Risk Accounting for Future Initiation of Statin Treatment. American Journal of Epidemiology, 2021, 190, 2000-2014.	3.4	16
112	Reduced risk of myocardial infarction related to active commuting: inflammatory and haemostatic effects are potential major mediating mechanisms. European Journal of Cardiovascular Prevention and Rehabilitation, 2010, 17, 56-62.	2.8	14
113	Information and Risk Modification Trial (INFORM): design of a randomised controlled trial of communicating different types of information about coronary heart disease risk, alongside lifestyle advice, to achieve change in health-related behaviour. BMC Public Health, 2015, 15, 868.	2.9	13
114	Genetically Predicted Type 2 Diabetes Mellitus Liability, Glycated Hemoglobin and Cardiovascular Diseases: A Wide-Angled Mendelian Randomization Study. Genes, 2021, 12, 1644.	2.4	13
115	Comparison of four methods to measure haemoglobin concentrations in whole blood donors (<scp>COMPARE</scp>): A diagnostic accuracy study. Transfusion Medicine, 2021, 31, 94-103.	1.1	13
116	Association of shorter leucocyte telomere length with risk of frailty. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1741-1751.	7.3	13
117	Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. International Journal of Epidemiology, 2021, 50, 212-222.	1.9	12
118	ACE inhibition and cardiometabolic risk factors, lung <i>ACE2</i> and <i>TMPRSS2</i> gene expression, and plasma ACE2 levels: a Mendelian randomization study. Royal Society Open Science, 2020, 7, 200958.	2.4	12
119	Correlation between left atrial spontaneous echocardiographic contrast and 5-year stroke/death in patients with non-valvular atrial fibrillation. Archives of Cardiovascular Diseases, 2020, 113, 525-533.	1.6	9
120	The influence of rare variants in circulating metabolic biomarkers. PLoS Genetics, 2020, 16, e1008605.	3.5	9
121	Risk factors and prediction models for incident heart failure with reduced and preserved ejection fraction. ESC Heart Failure, 2021, , .	3.1	9
122	SCORE2 models allow consideration of sex-specific cardiovascular disease risks by region. European Heart Journal, 2022, 43, 241-242.	2.2	9
123	Machine learning optimized polygenic scores for blood cell traits identify sex-specific trajectories and genetic correlations with disease. Cell Genomics, 2022, 2, 100086.	6.5	9
124	Coronary heart disease. larc (international Agency for Research on Cancer) Scientific Publications, 2011, , 363-86.	0.4	5
125	Commentary on "A meta-analysis but not a systematic review: an evaluation of the Global BMI Mortality Collaboration― Journal of Clinical Epidemiology, 2017, 88, 30-32.	5.0	4
126	Body-mass index and all-cause mortality – Authors' reply. Lancet, The, 2017, 389, 2285-2286.	13.7	4

#	Article	IF	Citations
127	Metabolic mediators of body-mass index and cardiovascular risk. Lancet, The, 2014, 383, 2042-2043.	13.7	3
128	Risk thresholds for alcohol consumption – Authors' reply. Lancet, The, 2018, 392, 2167-2168.	13.7	3
129	Quantifying the contribution of established risk factors to cardiovascular mortality differences between Russia and Norway. Scientific Reports, 2020, 10, 20796.	3.3	3
130	Depression and Incident Cardiovascular Diseaseâ€"Reply. JAMA - Journal of the American Medical Association, 2021, 325, 1680.	7.4	3
131	Body-mass index, abdominal adiposity, and cardiovascular risk – Authors' reply. Lancet, The, 2011, 378, 228.	13.7	2
132	Body mass index as a measure of global adiposity. Archives of Cardiovascular Diseases, 2018, 111, 141-143.	1.6	2
133	Response to Letter Regarding Article, "Transesophageal Echocardiography in Cryptogenic Stroke and Patent Foramen Ovale Analysis of Putative High-Risk Features From the Risk of Paradoxical Embolism Database― Circulation: Cardiovascular Imaging, 2014, 7, 573-573.	2.6	1
134	Developing Non-Laboratory Cardiovascular Risk Assessment Charts and Validating Laboratory and Non-Laboratory-Based Models. Global Heart, 2021, 16, 58.	2.3	1
135	Investigating Genetic and Other Determinants of First-Onset Myocardial Infarction in Malaysia: Protocol for the Malaysian Acute Vascular Events Risk Study. JMIR Research Protocols, 2022, 11, e31885.	1.0	1
136	An Expanded Genome-Wide Association Study of Fructosamine Levels Identifies <i>RCN3</i> as a Replicating Locus and Implicates <i>FCGRT</i> as the Effector Transcript. Diabetes, 2022, 71, 359-364.	0.6	1
137	Incremental value of risk factor variability for cardiovascular risk prediction in individuals with type 2 diabetes: results from UK primary care electronic health records. International Journal of Epidemiology, 2022, 51, 1813-1823.	1.9	1
138	C-reactive protein and vascular risk: From March to Jupiter. Archives of Cardiovascular Diseases, 2010, 103, 139-141.	1.6	0
139	Using large-scale epidemiological evidence to help evaluate biomarkers in cardiovascular disease. ClÁnica E InvestigaciÁ³n En Arteriosclerosis, 2010, 22, 33-35.	0.8	0
140	Cardiovascular disease risk by assigned treatment using the 2013 and 1998 obesity guidelines. Obesity, 2016, 24, 1554-1560.	3.0	0
141	Lessons from the INTERVAL study – Authors' reply. Lancet, The, 2018, 391, 2606.	13.7	0
142	International Forum on Mitigation Strategies to Prevent Faint and Preâ€faint Adverse Reactions in Whole Blood Donors: Responses. Vox Sanguinis, 2021, 116, e1-e24.	1.5	0
143	TELE-PHARMACY CARE OF GUIDELINE-DIRECTED MEDICAL THERAPY IN HEART FAILURE PATIENTS IS FEASIBLE DURING THE COVID-19 PANDEMIC. Journal of the American College of Cardiology, 2021, 77, 3046.	2.8	0