Eros Lazzerini Denchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180926/publications.pdf Version: 2024-02-01

FROS LAZZERINI DENCHI

#	Article	IF	CITATIONS
1	Stem cells at odds with telomere maintenance and protection. Trends in Cell Biology, 2022, 32, 527-536.	7.9	10
2	TRF2-mediated telomere protection is dispensable in pluripotent stem cells. Nature, 2021, 589, 110-115.	27.8	47
3	CTCF is a barrier for 2C-like reprogramming. Nature Communications, 2021, 12, 4856.	12.8	38
4	FAM111A induces nuclear dysfunction in disease and viral restriction. EMBO Reports, 2021, 22, e50803.	4.5	20
5	Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes and Development, 2020, 34, 1619-1636.	5.9	36
6	Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. American Journal of Human Genetics, 2020, 106, 389-404.	6.2	118
7	Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres. Genes and Development, 2020, 34, 650-662.	5.9	63
8	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathogens, 2020, 16, e1008496.	4.7	11
9	How stem cells keep telomeres in check. Differentiation, 2018, 100, 21-25.	1.9	8
10	Caught with One's Zinc Fingers in the Genome Integrity Cookie Jar. Trends in Genetics, 2018, 34, 313-325.	6.7	51
11	TZAP: A telomere-associated protein involved in telomere length control. Science, 2017, 355, 638-641.	12.6	136
12	Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons. Genes and Development, 2017, 31, 639-647.	5.9	24
13	Stop pulling my strings — what telomeres taught us about the DNA damage response. Nature Reviews Molecular Cell Biology, 2016, 17, 364-378.	37.0	148
14	Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis. Cell Reports, 2016, 15, 2170-2184.	6.4	94
15	Stressed telomeres without POT1 enhance tumorigenesis. Oncotarget, 2016, 7, 46833-46834.	1.8	4
16	Mammalian polymerase Î, promotes alternative NHEJ and suppresses recombination. Nature, 2015, 518, 254-257.	27.8	571
17	Let it go: how to deal with a breakup in mitosis. Nature Structural and Molecular Biology, 2014, 21, 433-435.	8.2	3
18	lsolation of Chromatin from Dysfunctional Telomeres Reveals an Important Role for Ring1b in NHEJ-Mediated Chromosome Fusions. Cell Reports, 2014, 7, 1320-1332.	6.4	43

Eros Lazzerini Denchi

#	Article	IF	CITATIONS
19	<scp>RNF</scp> 4 interacts with both <scp>SUMO</scp> and nucleosomes to promote the <scp>DNA</scp> damage response. EMBO Reports, 2014, 15, 601-608.	4.5	45
20	DUB-Resistant Ubiquitin to Survey Ubiquitination Switches in Mammalian Cells. Cell Reports, 2013, 5, 826-838.	6.4	37
21	A two-step mechanism for TRF2-mediated chromosome-end protection. Nature, 2013, 494, 502-505.	27.8	198
22	Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genetics, 2013, 9, e1003293.	3.5	192
23	Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites. Frontiers in Genetics, 2013, 4, 128.	2.3	35
24	A critical role for TORC1 in cellular senescence. Cell Cycle, 2012, 11, 2976-2976.	2.6	3
25	A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nature Structural and Molecular Biology, 2012, 19, 387-394.	8.2	147
26	Telomere dysfunction as a tool to identify novel DNA damage factors. FASEB Journal, 2012, 26, 933.7.	0.5	0
27	Maintenance of Telomeres in Cancer. , 2010, , 127-138.		0
28	Persistent Telomere Damage Induces Bypass of Mitosis and Tetraploidy. Cell, 2010, 141, 81-93.	28.9	248
29	New players in end-protection: LIM-domain proteins associate with the shelterin complex. Aging, 2010, 2, 390-391.	3.1	0
30	Give me a break: How telomeres suppress the DNA damage response. DNA Repair, 2009, 8, 1118-1126.	2.8	52
31	Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 2007, 448, 1068-1071.	27.8	738
32	Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nature Cell Biology, 2006, 8, 885-890.	10.3	263
33	Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes and Development, 2006, 20, 2648-2653.	5.9	119
34	E2F1 is crucial for E2Fâ€dependent apoptosis. EMBO Reports, 2005, 6, 661-668.	4.5	106
35	Nucleophosmin Is Required for DNA Integrity and p19Arf Protein Stability. Molecular and Cellular Biology, 2005, 25, 8874-8886.	2.3	195
36	Deregulated E2F Activity Induces Hyperplasia and Senescence-Like Features in the Mouse Pituitary Gland. Molecular and Cellular Biology, 2005, 25, 2660-2672.	2.3	178

#	Article	IF	CITATIONS
37	Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO Journal, 2004, 23, 4061-4071.	7.8	778
38	The E2F family: specific functions and overlapping interests. EMBO Journal, 2004, 23, 4709-4716.	7.8	464
39	Naturally death-resistant precursor cells revealed as the origin of retinoblastoma. Cancer Cell, 2004, 5, 513-515.	16.8	4
40	Mdm4 (Mdmx) Regulates p53-Induced Growth Arrest and Neuronal Cell Death during Early Embryonic Mouse Development. Molecular and Cellular Biology, 2002, 22, 5527-5538.	2.3	279
41	Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biology, 2001, 3, 552-558.	10.3	552
42	Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes and Development, 2000, 14, 2330-2343.	5.9	245