
Fabrice Duprat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1808369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels. Journal of Clinical Investigation, 2021, 131, .	3.9	23
2	Cholinergic modulation inhibits cortical spreading depression in mouse neocortex through activation of muscarinic receptors and decreased excitatory/inhibitory drive. Neuropharmacology, 2020, 166, 107951.	2.0	11
3	A two-hit story: Seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiology of Disease, 2019, 125, 31-44.	2.1	51
4	TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nature Communications, 2019, 10, 2024.	5.8	15
5	New Insights Into the Role of Cav2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 342.	1.4	17
6	Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathologica, 2017, 134, 749-767.	3.9	130
7	Dynamic regulation of TREK1 gating by Polycystin 2 via a Filamin A-mediated cytoskeletal Mechanism. Scientific Reports, 2017, 7, 17403.	1.6	16
8	Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage. Pflugers Archiv European Journal of Physiology, 2016, 468, 1151-1160.	1.3	20
9	Arterial Myogenic Activation through Smooth Muscle Filamin A. Cell Reports, 2016, 14, 2050-2058.	2.9	29
10	Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Reports, 2015, 13, 1161-1171.	2.9	250
11	Polycystins and partners: proposed role in mechanosensitivity. Journal of Physiology, 2014, 592, 2453-2471.	1.3	54
12	Slower Piezo1 Inactivation in Dehydrated Hereditary Stomatocytosis (Xerocytosis). Biophysical Journal, 2013, 105, 833-834.	0.2	21
13	Piezo1â€dependent stretchâ€activated channels are inhibited by Polycystinâ€2 in renal tubular epithelial cells. EMBO Reports, 2013, 14, 1143-1148.	2.0	127
14	Selective Involvement of Serum Response Factor in Pressure-Induced Myogenic Tone in Resistance Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 339-346.	1.1	16
15	Lysophosphatidic acid-operated K+ channels Journal of Biological Chemistry, 2013, 288, 26178.	1.6	0
16	Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels. Cell Reports, 2012, 1, 241-250.	2.9	54
17	Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Laboratory Investigation, 2011, 91, 24-32.	1.7	30
18	Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Archiv European Journal of Physiology, 2010, 460, 571-581.	1.3	120

FABRICE DUPRAT

#	Article	lF	CITATIONS
19	Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. Journal of Molecular and Cellular Cardiology, 2010, 48, 83-89.	0.9	68
20	The mechano-gated K2P channel TREK-1. European Biophysics Journal, 2009, 38, 293-303.	1.2	85
21	Polycystin-1 and -2 Dosage Regulates Pressure Sensing. Cell, 2009, 139, 587-596.	13.5	299
22	TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Archiv European Journal of Physiology, 2008, 456, 529-540.	1.3	86
23	The TASK background K2P channels: chemo- and nutrient sensors. Trends in Neurosciences, 2007, 30, 573-580.	4.2	68
24	Antipsychotics inhibit TREK but not TRAAK channels. Biochemical and Biophysical Research Communications, 2007, 354, 284-289.	1.0	52
25	Up- and down-regulation of the mechano-gated K2P channel TREK-1 by PIP2 and other membrane phospholipids. Pflugers Archiv European Journal of Physiology, 2007, 455, 97-103.	1.3	72
26	TREK-1, a K+ channel involved in polymodal pain perception. EMBO Journal, 2006, 25, 2368-2376.	3.5	363
27	AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K+ channels into open leak channels. EMBO Journal, 2006, 25, 5864-5872.	3.5	101
28	Membrane Potential-regulated Transcription of the Resting K+ Conductance TASK-3 via the Calcineurin Pathway. Journal of Biological Chemistry, 2006, 281, 28910-28918.	1.6	30
29	A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO Journal, 2005, 24, 44-53.	3.5	215
30	Pancreatic two P domain K+channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. Journal of Physiology, 2005, 562, 235-244.	1.3	66
31	Lysophosphatidic Acid-operated K+ Channels. Journal of Biological Chemistry, 2005, 280, 4415-4421.	1.6	82
32	Regulation of Synaptic Strength and AMPA Receptor Subunit Composition by PICK1. Journal of Neuroscience, 2004, 24, 5381-5390.	1.7	160
33	TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO Journal, 2004, 23, 2684-2695.	3.5	480
34	Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO Journal, 2003, 22, 5403-5411.	3.5	171
35	GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 715-720.	1.8	23
36	K+-dependent Cerebellar Granule Neuron Apoptosis. Journal of Biological Chemistry, 2003, 278, 32068-32076.	1.6	177

FABRICE DUPRAT

#	Article	IF	CITATIONS
37	Genomic and Functional Characteristics of Novel Human Pancreatic 2P Domain K+ Channels. Biochemical and Biophysical Research Communications, 2001, 282, 249-256.	1.0	157
38	PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses. Neuron, 2000, 28, 873-886.	3.8	297
39	Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction. Neuron, 1999, 24, 389-399.	3.8	298
40	A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO Journal, 1998, 17, 3297-3308.	3.5	418
41	A mammalian two pore domain mechano-gated S-like K+ channel. EMBO Journal, 1998, 17, 4283-4290.	3.5	572
42	Cloning and Expression of a Novel pH-sensitive Two Pore Domain K+ Channel from Human Kidney. Journal of Biological Chemistry, 1998, 273, 30863-30869.	1.6	319
43	New Modulatory α Subunits for Mammalian ShabK+ Channels. Journal of Biological Chemistry, 1997, 272, 24371-24379.	1.6	185
44	TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO Journal, 1997, 16, 5464-5471.	3.5	568
45	The structure, function and distribution of the mouse TWIK-1 K+ channel. FEBS Letters, 1997, 402, 28-32.	1.3	109
46	Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+channel proteins via their N-terminal end. FEBS Letters, 1996, 378, 64-68.	1.3	41
47	A pH-sensitive Yeast Outward Rectifier K+ Channel with Two Pore Domains and Novel Gating Properties. Journal of Biological Chemistry, 1996, 271, 4183-4187.	1.6	104
48	A New K+ Channel β Subunit to Specifically Enhance Kv2.2 (CDRK) Expression. Journal of Biological Chemistry, 1996, 271, 26341-26348.	1.6	92
49	Molecular Properties of Neuronal C-protein-activated Inwardly Rectifying K+ Channels. Journal of Biological Chemistry, 1995, 270, 28660-28667.	1.6	232
50	Heterologous Multimeric Assembly Is Essential for K+ Channel Activity of Neuronal and Cardiac G-Protein-Activated Inward Rectifiers. Biochemical and Biophysical Research Communications, 1995, 212, 657-663.	1.0	150
51	Susceptibility of cloned K+ channels to reactive oxygen species Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11796-11800.	3.3	171
52	Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Letters, 1994, 353, 37-42.	1.3	271