
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807050/publications.pdf Version: 2024-02-01



EDCARDO MORENO

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <i>Brucella</i> Evades Macrophage Killing via VirB-dependent Sustained Interactions with the<br>Endoplasmic Reticulum. Journal of Experimental Medicine, 2003, 198, 545-556.                                                    | 8.5  | 502       |
| 2  | <i>Brucella abortus</i> Transits through the Autophagic Pathway and Replicates in the Endoplasmic<br>Reticulum of Nonprofessional Phagocytes. Infection and Immunity, 1998, 66, 5711-5724.                                      | 2.2  | 379       |
| 3  | Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection. PLoS ONE, 2007, 2, e631.                                                                               | 2.5  | 281       |
| 4  | A twoâ€component regulatory system playing a critical role in plant pathogens and endosymbionts is present inBrucella abortusand controls cell invasion and virulence. Molecular Microbiology, 1998, 29, 125-138.               | 2.5  | 264       |
| 5  | Brucella intracellular life: from invasion to intracellular replication. Veterinary Microbiology, 2002, 90, 281-297.                                                                                                            | 1.9  | 263       |
| 6  | Cyclic β-1,2-glucan is a brucella virulence factor required for intracellular survival. Nature<br>Immunology, 2005, 6, 618-625.                                                                                                 | 14.5 | 241       |
| 7  | Rough vaccines in animal brucellosis: Structural and genetic basis and present status. Veterinary<br>Research, 2004, 35, 1-38.                                                                                                  | 3.0  | 240       |
| 8  | An evolutionary strategy for a stealthy intracellular <i>Brucella</i> pathogen. Immunological<br>Reviews, 2011, 240, 211-234.                                                                                                   | 6.0  | 225       |
| 9  | Retrospective and prospective perspectives on zoonotic brucellosis. Frontiers in Microbiology, 2014, 5, 213.                                                                                                                    | 3.5  | 214       |
| 10 | What have we learned from brucellosis in the mouse model?. Veterinary Research, 2012, 43, 29.                                                                                                                                   | 3.0  | 210       |
| 11 | Brucella melitensis: A nasty bug with hidden credentials for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1-3.                                                         | 7.1  | 209       |
| 12 | Brucella evolution and taxonomy. Veterinary Microbiology, 2002, 90, 209-227.                                                                                                                                                    | 1.9  | 199       |
| 13 | Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom<br>. Synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. FEBS Journal, 1998, 253,<br>452-461. | 0.2  | 161       |
| 14 | The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition.<br>PLoS Pathogens, 2012, 8, e1002675.                                                                                     | 4.7  | 140       |
| 15 | Brucella ceti and Brucellosis in Cetaceans. Frontiers in Cellular and Infection Microbiology, 2012, 2, 3.                                                                                                                       | 3.9  | 110       |
| 16 | Intracellular Adaptation of Brucella abortus. Journal of Proteome Research, 2009, 8, 1594-1609.                                                                                                                                 | 3.7  | 100       |
| 17 | MyD88, but Not Toll-Like Receptors 4 and 2, Is Required for Efficient Clearance of Brucella abortus.<br>Infection and Immunity, 2005, 73, 5137-5143.                                                                            | 2.2  | 99        |
| 18 | GTPases of the Rho Subfamily Are Required for Brucella abortus Internalization in Nonprofessional<br>Phagocytes. Journal of Biological Chemistry, 2001, 276, 44435-44443.                                                       | 3.4  | 95        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Neurobrucellosis in Stranded Dolphins, Costa Rica. Emerging Infectious Diseases, 2008, 14, 1430-1433.                                                                                                      | 4.3  | 84        |
| 20 | <i>Brucella abortus</i> Lipopolysaccharide in Murine Peritoneal Macrophages Acts as a<br>Down-Regulator of T Cell Activation. Journal of Immunology, 2000, 165, 5202-5210.                                 | 0.8  | 83        |
| 21 | Extensive Cell Envelope Modulation Is Associated with Virulence inBrucella abortus. Journal of Proteome Research, 2007, 6, 1519-1529.                                                                      | 3.7  | 82        |
| 22 | The Genus Brucella. , 2006, , 315-456.                                                                                                                                                                     |      | 75        |
| 23 | Genome evolution within the alphaProteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome?: Figure 1. FEMS Microbiology Reviews, 1998, 22, 255-275. | 8.6  | 65        |
| 24 | The Two-Component System BvrR/BvrS Regulates the Expression of the Type IV Secretion System VirB<br>in <i>Brucella abortus</i> . Journal of Bacteriology, 2010, 192, 5603-5608.                            | 2.2  | 64        |
| 25 | The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens. PLoS ONE, 2009, 4, e5893.                                    | 2.5  | 60        |
| 26 | Nucleotide sequence of the 16S rRNA fromBrucella abortus. Nucleic Acids Research, 1989, 17, 1765-1765.                                                                                                     | 14.5 | 57        |
| 27 | Activation of Rho and Rab GTPases dissociatesBrucella abortusinternalization from intracellular trafficking. Cellular Microbiology, 2002, 4, 663-676.                                                      | 2.1  | 55        |
| 28 | Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its<br>Lipopolysaccharide. PLoS Pathogens, 2015, 11, e1004853.                                                     | 4.7  | 52        |
| 29 | Brucellosis in Central America. Veterinary Microbiology, 2002, 90, 31-38.                                                                                                                                  | 1.9  | 49        |
| 30 | BvrR/BvrS-Controlled Outer Membrane Proteins Omp3a and Omp3b Are Not Essential for <i>Brucella abortus</i> Virulence. Infection and Immunity, 2007, 75, 4867-4874.                                         | 2.2  | 45        |
| 31 | Brucella cetiinfection in dolphins from the Western Mediterranean sea. BMC Veterinary Research, 2014, 10, 206.                                                                                             | 1.9  | 40        |
| 32 | <i>Brucella neotomae</i> Infection in Humans, Costa Rica. Emerging Infectious Diseases, 2017, 23, 997-1000.                                                                                                | 4.3  | 40        |
| 33 | Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cellular<br>Microbiology, 2006, 8, 197-206.                                                                            | 2.1  | 39        |
| 34 | Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than<br>Smooth Zoonotic Counterparts. Infection and Immunity, 2015, 83, 4861-4870.                               | 2.2  | 39        |
| 35 | Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen Brucella abortus.<br>PLoS Pathogens, 2013, 9, e1003167.                                                                  | 4.7  | 37        |
| 36 | Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains.<br>Frontiers in Microbiology, 2016, 7, 1557.                                                             | 3.5  | 37        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Brucella abortus Ornithine Lipids Are Dispensable Outer Membrane Components Devoid of a Marked<br>Pathogen-Associated Molecular Pattern. PLoS ONE, 2011, 6, e16030.                                 | 2.5  | 36        |
| 38 | Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells. PLoS Pathogens, 2012,<br>8, e1002983.                                                                              | 4.7  | 35        |
| 39 | Brucella Genomics: Macro and Micro Evolution. International Journal of Molecular Sciences, 2020, 21, 7749.                                                                                          | 4.1  | 34        |
| 40 | The one hundred year journey of the genus <i>Brucella</i> (Meyer and Shaw 1920). FEMS Microbiology Reviews, 2021, 45, .                                                                             | 8.6  | 30        |
| 41 | Brucella Genetic Variability in Wildlife Marine Mammals Populations Relates to Host Preference and Ocean Distribution. Genome Biology and Evolution, 2017, 9, 1901-1912.                            | 2.5  | 26        |
| 42 | Brucella abortus Senses the Intracellular Environment through the BvrR/BvrS Two-Component<br>System, Which Allows B. abortus To Adapt to Its Replicative Niche. Infection and Immunity, 2018, 86, . | 2.2  | 26        |
| 43 | Brucellosis in mammals of Costa Rica: An epidemiological survey. PLoS ONE, 2017, 12, e0182644.                                                                                                      | 2.5  | 25        |
| 44 | Neutrophils as Trojan Horse Vehicles for Brucella abortus Macrophage Infection. Frontiers in<br>Immunology, 2019, 10, 1012.                                                                         | 4.8  | 25        |
| 45 | Serological Diagnosis of Brucella Infections in Odontocetes. Vaccine Journal, 2009, 16, 906-915.                                                                                                    | 3.1  | 24        |
| 46 | Persistence of <i>Brucella abortus</i> in the Bone Marrow of Infected Mice. Journal of Immunology<br>Research, 2018, 2018, 1-8.                                                                     | 2.2  | 23        |
| 47 | Is Brucella an enteric pathogen?. Nature Reviews Microbiology, 2009, 7, 250-250.                                                                                                                    | 28.6 | 20        |
| 48 | Brucellosis caused by the wood rat pathogen Brucella neotomae: two case reports. Journal of<br>Medical Case Reports, 2017, 11, 352.                                                                 | 0.8  | 20        |
| 49 | Epidemiology of bovine brucellosis in Costa Rica: Lessons learned from failures in the control of the disease. PLoS ONE, 2017, 12, e0182380.                                                        | 2.5  | 19        |
| 50 | The Role of Neutrophils in Brucellosis. Microbiology and Molecular Biology Reviews, 2020, 84, .                                                                                                     | 6.6  | 19        |
| 51 | Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens, 2022, 11, 377.                                                                                       | 2.8  | 19        |
| 52 | Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth<br>Brucella sp. BCCN84.3. Frontiers in Veterinary Science, 2019, 6, 175.                        | 2.2  | 18        |
| 53 | The use of green fluorescent protein as a marker for Brucella vaccines. Vaccine, 2011, 29, 577-582.                                                                                                 | 3.8  | 15        |
| 54 | Facing the Human and Animal Brucellosis Conundrums: The Forgotten Lessons. Microorganisms, 2022,<br>10, 942.                                                                                        | 3.6  | 14        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Persistence of Brucella abortus lineages revealed by genomic characterization and phylodynamic analysis. PLoS Neglected Tropical Diseases, 2020, 14, e0008235.             | 3.0 | 13        |
| 56 | Intracellular Passage Triggers a Molecular Response in Brucella abortus That Increases Its<br>Infectiousness. Infection and Immunity, 2021, 89, e0000421.                  | 2.2 | 11        |
| 57 | Neutrophils Dampen Adaptive Immunity in Brucellosis. Infection and Immunity, 2019, 87, .                                                                                   | 2.2 | 10        |
| 58 | N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by<br>Mouse Neutrophils. Infection and Immunity, 2016, 84, 1712-1721.           | 2.2 | 8         |
| 59 | Brucella sp. sequence-type 27 associated with abortion in dwarf sperm whale Kogia sima. European<br>Journal of Wildlife Research, 2021, 67, 1.                             | 1.4 | 6         |
| 60 | Purification of Intracellular Bacteria: Isolation of Viable Brucella abortus from Host Cells. Methods<br>in Molecular Biology, 2014, 1197, 245-260.                        | 0.9 | 4         |
| 61 | Pathological Studies and Postmortem Computed Tomography of Dolphins with<br>Meningoencephalomyelitis and Osteoarthritis Caused by Brucella ceti. Oceans, 2022, 3, 189-203. | 1.3 | 4         |
| 62 | Depletion of Complement Enhances the Clearance of Brucella abortus in Mice. Infection and Immunity, 2018, 86, .                                                            | 2.2 | 2         |
| 63 | Canine brucellosis in Costa Rica reveals widespread Brucella canis infection and the recent introduction of foreign strains. Veterinary Microbiology, 2021, 257, 109072.   | 1.9 | 2         |
| 64 | Platelet depletion does not alter the course of Brucella abortus infection in vivo. Microbial<br>Pathogenesis, 2022, 164, 105458.                                          | 2.9 | 1         |