
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1804433/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
2	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
3	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
4	Plant trait responses to grazing ? a global synthesis. Global Change Biology, 2007, 13, 313-341.	9.5	815
5	Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 1998, 9, 113-122.	2.2	653
6	Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 2015, 24, 1314-1328.	5.8	366
7	A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics, 2002, 7, 129-142.	1.4	314
8	PATTERNS OF ANIMAL DIVERSITY IN DIFFERENT FORMS OF TREE COVER IN AGRICULTURAL LANDSCAPES. , 2006, 16, 1986-1999.		281
9	Does functional trait diversity predict aboveâ€ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 2015, 103, 191-201.	4.0	265
10	FDiversity: a software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2011, 2, 233-237.	5.2	210
11	Composition and Dynamics of Functional Groups of Trees During Tropical Forest Succession in Northeastern Costa Rica. Biotropica, 2010, 42, 31-40.	1.6	121
12	Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13709-13714.	7.1	103
13	Competition for light in heterogeneous canopies: Application of MAESTRA to a coffee (Coffea arabica) Tj ETQq1	1 0.78431 4.8	4 rgBT /Over
14	Environmental-economic benefits and trade-offs on sustainably certified coffee farms. Ecological Indicators, 2017, 79, 330-337.	6.3	73
15	Effects of pasture management on the natural regeneration of neotropical trees. Journal of Applied Ecology, 2008, 45, 371-380.	4.0	71
16	Increased lightâ€use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant, Cell and Environment, 2017, 40, 1592-1608.	5.7	67
17	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	9.9	65
18	Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Annals of Forest Science, 2013, 70, 515-524.	2.0	51

#	Article	IF	CITATIONS
19	Evaluation of Multienvironment Trials of Peanut Cultivars. Crop Science, 2005, 45, cropsci2005.0018.	1.8	47
20	Shade Effects on the Dispersal of Airborne <i>Hemileia vastatrix</i> Uredospores. Phytopathology, 2016, 106, 572-580.	2.2	47
21	Disentangling above―and belowâ€ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat. New Phytologist, 2017, 216, 1236-1246.	7.3	40
22	Consistency in bird use of tree cover across tropical agricultural landscapes. , 2014, 24, 158-168.		35
23	Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, 2018, 229, 19-24.	3.6	35
24	Selection of forest species for the rehabilitation of disturbed soils in oil fields in the Ecuadorian Amazon. Science of the Total Environment, 2016, 566-567, 761-770.	8.0	32
25	Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. PLoS ONE, 2018, 13, e0206149.	2.5	31
26	Error Variation in Multienvironment Peanut Trials: Withinâ€Trial Spatial Correlation and Betweenâ€Trial Heterogeneity. Crop Science, 2005, 45, 1927-1933.	1.8	30
27	Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. from cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control, 2013, 67, 317-327.	3.0	30
28	Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agroforestry Systems, 2016, 90, 207-218.	2.0	27
29	How climate awareness influences farmers' adaptation decisions in Central America?. Journal of Rural Studies, 2018, 64, 11-19.	4.7	27
30	Shade tree Chloroleucon eurycyclum promotes coffee leaf rust by reducing uredospore wash-off by rain. Crop Protection, 2020, 129, 105038.	2.1	27
31	Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems and Environment, 2021, 314, 107349.	5.3	26
32	Functional Diversity Indices. SpringerBriefs in Environmental Science, 2012, , 27-51.	0.3	25
33	More Stable Productivity of Semi Natural Grasslands than Sown Pastures in a Seasonally Dry Climate. PLoS ONE, 2012, 7, e35555.	2.5	25
34	Determinants of rain-forest floristic variation on an altitudinal gradient in southern Costa Rica. Journal of Tropical Ecology, 2012, 28, 463-481.	1.1	23
35	Scorpion diversity in two different habitats in the Arid Chaco, Argentina. Journal of Insect Conservation, 2014, 18, 373-384.	1.4	22
36	Relevance of local knowledge in decision-making and rural innovation: A methodological proposal for leveraging participation of Colombian cocoa producers. Journal of Rural Studies, 2020, 75, 119-124.	4.7	20

#	Article	IF	CITATIONS
37	Human pressure on water quality and water yield in the upper Grijalva river basin in the Mexico-Guatemala border. Ecohydrology and Hydrobiology, 2016, 16, 149-159.	2.3	18
38	Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytologist, 2022, 235, 1351-1364.	7.3	18
39	Relationship between environmental variables and surface activity of scorpions in the Arid Chaco ecoregion of Argentina. Invertebrate Biology, 2013, 132, 145-155.	0.9	16
40	First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLoS ONE, 2018, 13, e0191003.	2.5	16
41	Litterfall and nutrient dynamics shift in tropical forest restoration sites after a decade of recovery. Biotropica, 2018, 50, 491-498.	1.6	15
42	Leaf litter stoichiometry affects decomposition rates and nutrient dynamics in tropical forests under restoration in Costa Rica. Restoration Ecology, 2019, 27, 549-558.	2.9	15
43	Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America. Agroforestry Systems, 2014, 88, 517-526.	2.0	14
44	Selection of Adequate Species for Degraded Areas by Oil‣xploitation Industry as a Key Factor for Recovery Forest in the Ecuadorian Amazon. Land Degradation and Development, 2016, 27, 1771-1780.	3.9	14
45	The effect of different levels of tree cover on milk production in dual-purpose livestock systems in the humid tropics of the Colombian Amazon region. Agroforestry Systems, 2021, 95, 93-102.	2.0	13
46	Shade and Agronomic Intensification in Coffee Agroforestry Systems: Trade-Off or Synergy?. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	12
47	Leaf functional traits vary within and across tree species in tropical cloud forest on rock outcrop versus volcanic soil. Journal of Vegetation Science, 2020, 31, 129-138.	2.2	11
48	Altitude and species identity drive leaf litter decomposition rates of ten species on a 2950 m altitudinal gradient in Neotropical rain forests. Biotropica, 2020, 52, 11-21.	1.6	11
49	Dung Beetle Assemblages Attracted to Cow and Horse Dung: The Importance of Mouthpart Traits, Body Size, and Nesting Behavior in the Community Assembly Process. Life, 2021, 11, 873.	2.4	11
50	Caracterización y rol de los frutales amazónicos en fincas familiares en las provincias de SucumbÃos y Orellana (Ecuador). Ciencia Tecnologia Agropecuaria, 2018, 19, .	0.3	11
51	Functional responses to anthropogenic disturbance and the importance of selected traits: A study case using dung beetles. Ecological Entomology, 2022, 47, 503-514.	2.2	11
52	Experimental study on survival rates in two arboreal species from the Argentinean Dry Chaco. Forest Ecology and Management, 1998, 103, 203-210.	3.2	10
53	Prediction model for sap flow in cacao trees under different radiation intensities in the western Colombian Amazon. Scientific Reports, 2021, 11, 10512.	3.3	10
54	The positive association between natural vegetation, native coccinellids and functional diversity of aphidophagous coccinellid communities in alfalfa. Insect Conservation and Diversity, 2021, 14, 464-475.	3.0	10

FERNANDO CASANOVES

#	Article	IF	CITATIONS
55	Water Use, Leaf Cooling and Carbon Assimilation Efficiency of Heat Resistant Common Beans Evaluated in Western Amazonia. Frontiers in Plant Science, 2021, 12, 644010.	3.6	9
56	FDiversity: an Integrated Tool to Estimate and Analyze Functional Diversity. Bulletin of the Ecological Society of America, 2011, 92, 147-152.	0.2	8
57	Recovering from forest-to-pasture conversion: leaf decomposition in Central Amazonia, Brazil. Journal of Tropical Ecology, 2014, 30, 93-96.	1.1	8
58	Microhabitat use and behavior differ across sex-age classes in the scorpion <i>Brachistosternus ferrugineus</i> (Scorpiones: Bothriuridae). Journal of Arachnology, 2016, 44, 235-244.	0.5	8
59	Dimensions of social and political capital in interventions to improve household well-being: Implications for coffee-growing areas in southern Colombia. PLoS ONE, 2021, 16, e0245971.	2.5	8
60	Populações de minhocas em sistemas agroflorestais com café convencional e orgânico. Ciencia E Agrotecnologia, 2008, 32, 1184-1188.	1.5	7
61	Concepts and a methodology for evaluating environmental services from trees of small farms in Chiapas, México. Journal of Environmental Management, 2013, 114, 115-124.	7.8	7
62	Agronomic conditions of cacao cultivation: its relationship with the capitals endowment of Colombian rural households. Agroforestry Systems, 2020, 94, 2367-2380.	2.0	7
63	Cacao cultivation as a livelihood strategy: contributions to the well-being of Colombian rural households. Agriculture and Human Values, 2022, 39, 201-216.	3.0	7
64	Non-Destructive Estimation of the Leaf Weight and Leaf Area in Common Bean. Agronomy, 2022, 12, 711.	3.0	6
65	Species interactions across trophic levels mediate rainfall effects on dryland vegetation dynamics. Ecological Monographs, 2021, 91, e01441.	5.4	5
66	Contribution of Livelihoods to the Well-Being of Coffee-Growing Households in Southern Colombia: A Structural Equation Modeling Approach. Sustainability, 2022, 14, 743.	3.2	5
67	Effects of Production Practices on the Abundance of Quarantine Pests in <i>Dracaena marginata</i> in Costa Rican Production Fields. Journal of Economic Entomology, 2008, 101, 1779-1785.	1.8	4
68	Factors Influencing the Abundance of Pests in Production Fields and Rates of Interception of <i>Dracaena marginata</i> Imported From Costa Rica. Journal of Economic Entomology, 2013, 106, 2027-2034.	1.8	4
69	Effects of Weed Cover Composition on Insect Pest and Natural Enemy Abundance in a Field of <i>Dracaena marginata</i> (Asparagales: Asparagaceae) in Costa Rica. Environmental Entomology, 2014, 43, 320-327.	1.4	4
70	Almacenamiento de carbono en sistemas agroforestales en los Llanos Orientales de Colombia. Revista De Biologia Tropical, 2021, 69, .	0.4	4
71	Impact of Shrimp Ponds on Mangrove Blue Carbon Stocks in Ecuador. Forests, 2021, 12, 816.	2.1	4
72	Above-ground biomass storage potential in primary rain forests managed for timber production in Costa Rica. Forest Ecology and Management, 2021, 497, 119462.	3.2	4

#	Article	IF	CITATIONS
73	Influence of scattered trees in grazing areas on soil properties in the Piedmont region of the Colombian Amazon. PLoS ONE, 2021, 16, e0261612.	2.5	4
74	Population dynamic and management of Pinus oocarpa and Tabebuia rosea within silvopastoral systems in Central America. Agroforestry Systems, 2017, 91, 1119-1127.	2.0	3
75	Biomass of timber species in Central American secondary forests: Towards climate change mitigation through sustainable timber harvesting. Forest Ecology and Management, 2021, 496, 119439.	3.2	3
76	How Close Are We to Self-Provisioning? A Look at the Livelihood Strategies of Rural Households in the Southern Andean Region of Colombia. Sustainability, 2022, 14, 2504.	3.2	2
77	Intraspecific variation in biocontrol traits in Mastrus ridens (Hymenoptera: Ichneumonidae) laboratory populations. BioControl, 2021, 66, 475-485.	2.0	1
78	How to Estimate Functional Diversity Indices. SpringerBriefs in Environmental Science, 2012, , 53-95.	0.3	0
79	Community aggregated traits disclose functional responses to seasonal resource fluctuations and spatial heterogeneity. Journal of Vegetation Science, 2017, 28, 291-302.	2.2	0