Xue-qing Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1804312/publications.pdf

Version: 2024-02-01

353 papers 14,345 citations

61 h-index 91 g-index

356 all docs

356 docs citations

356 times ranked

8474 citing authors

#	Article	IF	CITATIONS
1	Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chemistry, 2015, 17, 320-324.	9.0	352
2	Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chemistry, 2014, 16, 2156.	9.0	334
3	pHâ€Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses. ChemSusChem, 2013, 6, 919-927.	6.8	219
4	Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UVâ€Blocking Performance. Advanced Functional Materials, 2019, 29, 1806912.	14.9	211
5	Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Industrial Crops and Products, 2017, 101, 54-60.	5.2	201
6	Reduction of lignin color via one-step UV irradiation. Green Chemistry, 2016, 18, 695-699.	9.0	176
7	CO ₂ -responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO ₂ /N ₂ -switchable Pickering emulsions. Green Chemistry, 2014, 16, 4963-4968.	9.0	173
8	Sulfonation of Alkali Lignin and Its Potential Use in Dispersant for Cement. Journal of Dispersion Science and Technology, 2009, 30, 1-6.	2.4	171
9	Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Conversion and Management, 2007, 48, 2433-2438.	9.2	166
10	Investigation of Aggregation and Assembly of Alkali Lignin Using Iodine as a Probe. Biomacromolecules, 2011, 12, 1116-1125.	5 . 4	162
11	Sunscreen Performance of Lignin from Different Technical Resources and Their General Synergistic Effect with Synthetic Sunscreens. ACS Sustainable Chemistry and Engineering, 2016, 4, 4029-4035.	6.7	155
12	High-Performance Lignin-Containing Polyurethane Elastomers with Dynamic Covalent Polymer Networks. Macromolecules, 2019, 52, 6474-6484.	4.8	155
13	pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery. Chemical Engineering Journal, 2017, 327, 1176-1183.	12.7	147
14	High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. International Journal of Biological Macromolecules, 2020, 142, 551-558.	7.5	122
15	Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors. Chemical Engineering Journal, 2020, 392, 123721.	12.7	121
16	Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 50-58.	4.7	118
17	Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin. Industrial & Engineering Chemistry Research, 2013, 52, 8464-8470.	3.7	118
18	Lignin-Based Microsphere: Preparation and Performance on Encapsulating the Pesticide Avermectin. ACS Sustainable Chemistry and Engineering, 2017, 5, 3321-3328.	6.7	118

#	Article	IF	Citations
19	Preparation of Nanocapsules via the Self-Assembly of Kraft Lignin: A Totally Green Process with Renewable Resources. ACS Sustainable Chemistry and Engineering, 2016, 4, 1946-1953.	6.7	115
20	Aggregation Behavior of Sodium Lignosulfonate in Water Solution. Journal of Physical Chemistry B, 2010, 114, 15857-15861.	2.6	113
21	In Situ Preparation of Ru@N-Doped Carbon Catalyst for the Hydrogenolysis of Lignin To Produce Aromatic Monomers. ACS Catalysis, 2019, 9, 5828-5836.	11.2	110
22	Critical Role of Degree of Polymerization of Cellulose in Super-Strong Nanocellulose Films. Matter, 2020, 2, 1000-1014.	10.0	106
23	High-performance dispersant of coal–water slurry synthesized from wheat straw alkali lignin. Fuel Processing Technology, 2007, 88, 375-382.	7.2	104
24	Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresource Technology, 2013, 146, 478-484.	9.6	104
25	Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and â‰≢00 °C: mode and utility of lignin esterification. Green Chemistry, 2020, 22, 1605-1617.	9.0	103
26	Corrosion and Scale Inhibition Properties of Sodium Lignosulfonate and Its Potential Application in Recirculating Cooling Water System. Industrial & Engineering Chemistry Research, 2006, 45, 5716-5721.	3.7	98
27	Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Processing Technology, 2016, 144, 181-185.	7.2	97
28	Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 226-234.	4.7	97
29	Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Selfâ€Assembly Mechanisms in Organic–Aqueous Solvent Mixtures. ChemSusChem, 2020, 13, 4420-4427.	6.8	97
30	Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Applied Surface Science, 2017, 426, 206-216.	6.1	95
31	Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry. Journal of Industrial and Engineering Chemistry, 2015, 27, 192-200.	5.8	94
32	Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance. Journal of Materials Chemistry A, 2019, 7, 26917-26926.	10.3	93
33	Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Industrial Crops and Products, 2016, 87, 191-197.	5.2	88
34	Accordionâ€Like Carbon with High Nitrogen Doping for Fast and Stable K Ion Storage. Advanced Energy Materials, 2021, 11, 2101928.	19.5	88
35	Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers, 2020, 12, 2471.	4.5	86
36	Synthesis, Structure, and Dispersion Property of a Novel Lignin-Based Polyoxyethylene Ether from Kraft Lignin and Poly(ethylene glycol). ACS Sustainable Chemistry and Engineering, 2014, 2, 1902-1909.	6.7	80

#	Article	IF	Citations
37	Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Small Methods, 2021, 5, e2100896.	8.6	80
38	Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Industrial Crops and Products, 2018, 124, 747-754.	5.2	77
39	Encapsulating TiO ₂ in Lignin-Based Colloidal Spheres for High Sunscreen Performance and Weak Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 6234-6242.	6.7	77
40	A Novel Lignin/ZnO Hybrid Nanocomposite with Excellent UV-Absorption Ability and Its Application in Transparent Polyurethane Coating. Industrial & Engineering Chemistry Research, 2017, 56, 11133-11141.	3.7	76
41	Highly Resilient Lignin-Containing Polyurethane Foam. Industrial & Engineering Chemistry Research, 2019, 58, 496-504.	3.7	76
42	Preparation of Lignin-Based Superplasticizer by Graft Sulfonation and Investigation of the Dispersive Performance and Mechanism in a Cementitious System. Industrial & Engineering Chemistry Research, 2013, 52, 16101-16109.	3.7	74
43	In Situ Synthesis of Flowerlike Lignin/ZnO Composite with Excellent UV-Absorption Properties and Its Application in Polyurethane. ACS Sustainable Chemistry and Engineering, 2018, 6, 3696-3705.	6.7	74
44	Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability. Carbon, 2020, 162, 256-266.	10.3	74
45	Lignin Reverse Micelles for UV-Absorbing and High Mechanical Performance Thermoplastics. Industrial & Department of the Properties of the	3.7	73
46	Controlling the sustainability and shape change of the zinc anode in rechargeable aqueous Zn/LiMn2O4 battery. Energy Storage Materials, 2018, 15, 131-138.	18.0	73
47	Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Industrial Crops and Products, 2015, 74, 285-292.	5.2	72
48	Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustainable Chemistry and Engineering, 2015, 3, 3239-3244.	6.7	72
49	Aggregation-induced emission: the origin of lignin fluorescence. Polymer Chemistry, 2016, 7, 3502-3508.	3.9	72
50	Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Bioresource Technology, 2018, 249, 1-8.	9.6	71
51	Evaluation of sulphonated acetone–formaldehyde (SAF) used in coal water slurries prepared from different coals. Fuel, 2007, 86, 1439-1445.	6.4	70
52	Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. Journal of Energy Chemistry, 2015, 24, 72-76.	12.9	70
53	Structure and Properties of Sodium Lignosulfonate with Different Molecular Weight Used as Dye Dispersant. Journal of Dispersion Science and Technology, 2015, 36, 532-539.	2.4	69
54	Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12377-12383.	8.0	69

#	Article	IF	Citations
55	Evaluation of treated black liquor used as dispersant of concentrated coal–water slurry. Fuel, 2010, 89, 716-723.	6.4	68
56	High Performance Thermoplastic Elastomers with Biomass Lignin as Plastic Phase. ACS Sustainable Chemistry and Engineering, 2019, 7, 6550-6560.	6.7	68
57	A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate. Chemical Engineering Journal, 2017, 326, 803-810.	12.7	67
58	Facile and Green Preparation of High UV-Blocking Lignin/Titanium Dioxide Nanocomposites for Developing Natural Sunscreens. Industrial & Engineering Chemistry Research, 2018, 57, 15740-15748.	3.7	67
59	Modulation of BrÃ,nsted and Lewis Acid Centers for Ni <i></i> O ₄ Spinel Catalysts: Towards Efficient Catalytic Conversion of Lignin. Advanced Functional Materials, 2022, 32, .	14.9	67
60	Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols. Bioresource Technology, 2016, 218, 718-722.	9.6	66
61	The feasibility of synthetic surfactant as an air entraining agent for the cement matrix. Construction and Building Materials, 2008, 22, 1774-1779.	7.2	65
62	K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage. Journal of Alloys and Compounds, 2019, 785, 706-714.	5.5	65
63	Adsorption Characteristics of Lignosulfonates in Salt-Free and Salt-Added Aqueous Solutions. Biomacromolecules, 2011, 12, 3313-3320.	5.4	64
64	Modified Lignin with Anionic Surfactant and Its Application in Controlled Release of Avermectin. Journal of Agricultural and Food Chemistry, 2018, 66, 3457-3464.	5.2	64
65	Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 187-194.	4.7	64
66	Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries. Green Chemistry, 2020, 22, 4321-4330.	9.0	64
67	Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Nature Communications, 2021, 12, 2916.	12.8	64
68	Lignin: a sustainable photothermal block for smart elastomers. Green Chemistry, 2022, 24, 823-836.	9.0	64
69	Bioinspired Lignin-Polydopamine Nanocapsules with Strong Bioadhesion for Long-Acting and High-Performance Natural Sunscreens. Biomacromolecules, 2020, 21, 3231-3241.	5.4	62
70	Strong, Reusable, and Selfâ€Healing Ligninâ€Containing Polyurea Adhesives. ChemSusChem, 2020, 13, 4691-4701.	6.8	62
71	Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. International Journal of Biological Macromolecules, 2020, 146, 9-17.	7. 5	61
72	Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose. Cellulose, 2014, 21, 1351-1359.	4.9	60

#	Article	IF	CITATIONS
73	Properties of Different Molecular Weight Sodium Lignosulfonate Fractions as Dispersant of Coalâ€Water Slurry. Journal of Dispersion Science and Technology, 2006, 27, 851-856.	2.4	59
74	Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 154-159.	4.7	59
75	Bioconversion of Beetle-Killed Lodgepole Pine Using SPORL: Process Scale-up Design, Lignin Coproduct, and High Solids Fermentation without Detoxification. Industrial & Engineering Chemistry Research, 2013, 52, 16057-16065.	3.7	59
76	Reaction-Free Lignin Whitening via a Self-Assembly of Acetylated Lignin. Industrial & Engineering Chemistry Research, 2014, 53, 10024-10028.	3.7	59
77	Synergistic Antioxidant Performance of Lignin and Quercetin Mixtures. ACS Sustainable Chemistry and Engineering, 2017, 5, 8424-8428.	6.7	59
78	Direct Construction of Catechol Lignin for Engineering Longâ€Acting Conductive, Adhesive, and UVâ€Blocking Hydrogel Bioelectronics. Small Methods, 2021, 5, e2001311.	8.6	59
79	Salting-Out Effect of Dipotassium Hydrogen Phosphate on the Recovery of Acetone, Butanol, and Ethanol from a Prefractionator. Journal of Chemical & Ethanol	1.9	57
80	A novel branched claw-shape lignin-based polycarboxylate superplasticizer: Preparation, performance and mechanism. Cement and Concrete Research, 2019, 119, 89-101.	11.0	57
81	Effect of structural characteristics on the depolymerization of lignin into phenolic monomers. Fuel, 2018, 223, 366-372.	6.4	55
82	Formation of Uniform Colloidal Spheres Based on Lignosulfonate, a Renewable Biomass Resource Recovered from Pulping Spent Liquor. ACS Sustainable Chemistry and Engineering, 2018, 6, 1379-1386.	6.7	55
83	Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 15966-15973.	6.7	54
84	A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H2O2 incubation. Applied Microbiology and Biotechnology, 2013, 97, 10309-10320.	3.6	53
85	Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Bioresource Technology, 2015, 185, 165-170.	9.6	53
86	Self-assembly of kraft lignin into nanospheres in dioxane-water mixtures. Holzforschung, 2016, 70, 725-731.	1.9	52
87	Selective Hydrogenation of Furfural to Furfuryl Alcohol over Acid-Activated Attapulgite-Supported NiCoB Amorphous Alloy Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 498-511.	3.7	52
88	Effect of Side Chains and Sulfonic Groups on the Performance of Polycarboxylate-Type Superplasticizers in Concentrated Cement Suspensions. Journal of Dispersion Science and Technology, 2011, 32, 203-212.	2.4	51
89	Efficient Removal of Cu ²⁺ in Water by Carboxymethylated Cellulose Nanofibrils: Performance and Mechanism. Biomacromolecules, 2019, 20, 4466-4475.	5.4	51
90	Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5425-5438.	8.0	51

#	Article	IF	CITATIONS
91	Ultrahigh molecular weight, lignosulfonate-based polymers: preparation, self-assembly behaviours and dispersion property in coal–water slurry. RSC Advances, 2015, 5, 21588-21595.	3.6	50
92	Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Advanced Energy Materials, 2017, 7, 1601499.	19.5	50
93	Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy, 2021, 87, 106184.	16.0	50
94	Study on the stability of coal water slurry using dispersion-stability analyzer. Journal of Fuel Chemistry and Technology, 2008, 36, 524-529.	2.0	49
95	Development and evaluation of polycarboxylic acid hyper-dispersant used to prepare high-concentrated coal–water slurry. Powder Technology, 2012, 229, 185-190.	4.2	49
96	Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation. Journal of Agricultural and Food Chemistry, 2017, 65, 11011-11019.	5 . 2	49
97	Physicochemical Properties of Calcium Lignosulfonate with Different Molecular Weights as Dispersant in Aqueous Suspension. Journal of Dispersion Science and Technology, 2008, 29, 1296-1303.	2.4	48
98	Using recyclable pH-responsive lignin amphoteric surfactant to enhance the enzymatic hydrolysis of lignocelluloses. Green Chemistry, 2017, 19, 5479-5487.	9.0	48
99	Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Carbohydrate Polymers, 2019, 207, 52-58.	10.2	48
100	Influence of dispersant on bound water content in coal–water slurry and its quantitative determination. Energy Conversion and Management, 2008, 49, 3063-3068.	9.2	47
101	Effect of molecular weight of sulfanilic acid-phenol-formaldehyde condensate on the properties of cementitious system. Cement and Concrete Research, 2009, 39, 283-288.	11.0	47
102	Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin. Bioresource Technology, 2017, 227, 74-81.	9.6	45
103	Microwave-assisted selective cleavage of C C bond for lignin depolymerization. Fuel Processing Technology, 2017, 161, 155-161.	7.2	45
104	Lignin-polyurea microcapsules with anti-photolysis and sustained-release performances synthesized via pickering emulsion template. Reactive and Functional Polymers, 2018, 123, 115-121.	4.1	45
105	Long-Acting and Safe Sunscreens with Ultrahigh Sun Protection Factor via Natural Lignin Encapsulation and Synergy. ACS Applied Bio Materials, 2018, 1, 1276-1285.	4.6	45
106	Three-dimensional Porous Framework Lignin-Derived Carbon/ZnO Composite Fabricated by a Facile Electrostatic Self-Assembly Showing Good Stability for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 16419-16427.	6.7	45
107	Chemical reactivity of alkali lignin modified with laccase. Biomass and Bioenergy, 2013, 55, 198-204.	5.7	44
108	Preparation and Evaluation of Carboxymethylated Lignin as Dispersant for Aqueous Graphite Suspension Using Turbiscan Lab Analyzer. Journal of Dispersion Science and Technology, 2013, 34, 644-650.	2.4	44

#	Article	IF	CITATIONS
109	Facile and Efficient Synthesis of Silver Nanoparticles Based on Biorefinery Wood Lignin and Its Application as the Optical Sensor. ACS Sustainable Chemistry and Engineering, 2018, 6, 7695-7703.	6.7	44
110	Amino acid-functionalized polyampholytes as natural broad-spectrum antimicrobial agents for high-efficient personal protection. Green Chemistry, 2020, 22, 6357-6371.	9.0	43
111	Light Color Dihydroxybenzophenone Grafted Lignin with High UVA/UVB Absorbance Ratio for Efficient and Safe Natural Sunscreen. Industrial & Engineering Chemistry Research, 2020, 59, 17057-17068.	3.7	43
112	Effect of molecular weight of sulphonated acetone-formaldehyde condensate on its adsorption and dispersion properties in cementitious system. Cement and Concrete Research, 2012, 42, 1043-1048.	11.0	42
113	Unexpected fluorescent emission of graft sulfonated-acetone–formaldehyde lignin and its application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 5297-5306.	5.5	42
114	Preparation of renewable lignin-derived nitrogen-doped carbon nanospheres as anodes for lithium-ion batteries. RSC Advances, 2016, 6, 77143-77150.	3.6	42
115	Recovering cellulase and increasing glucose yield during lignocellulosic hydrolysis using lignin-MPEG with a sensitive pH response. Green Chemistry, 2019, 21, 1141-1151.	9.0	42
116	Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application. International Journal of Biological Macromolecules, 2020, 150, 371-379.	7.5	42
117	Alkyl Chain Cross-Linked Sulfobutylated Lignosulfonate: A Highly Efficient Dispersant for Carbendazim Suspension Concentrate. ACS Sustainable Chemistry and Engineering, 2015, 3, 1551-1557.	6.7	41
118	Ethanol-Enhanced Liquefaction of Lignin with Formic Acid as an <i>in Situ</i> Hydrogen Donor. Energy &	5.1	41
119	Very Strong, Superâ€Tough, Antibacterial, and Biodegradable Polymeric Materials with Excellent UVâ€Blocking Performance. ChemSusChem, 2020, 13, 4974-4984.	6.8	41
120	Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128191.	4.7	41
121	Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate. Journal of Colloid and Interface Science, 2009, 338, 151-155.	9.4	40
122	Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate. Bioresource Technology, 2016, 216, 968-975.	9.6	40
123	Biomass Lignin Stabilized Anti-UV High Internal Phase Emulsions: Preparation, Rheology, and Application As Carrier Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 810-818.	6.7	40
124	Synthesis of highly conductive hydrogel with high strength and super toughness. Polymer, 2020, 202, 122643.	3.8	40
125	Energy-Saving Recovery of Acetone, Butanol, and Ethanol from a Prefractionator by the Salting-Out Method. Journal of Chemical & Engineering Data, 2013, 58, 3297-3303.	1.9	39
126	Effect of functional groups on hydrogenolysis of lignin model compounds. Fuel Processing Technology, 2016, 154, 132-138.	7.2	39

#	Article	IF	CITATIONS
127	pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase. Bioresource Technology, 2019, 294, 122133.	9.6	39
128	Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy. Journal of Colloid and Interface Science, 2021, 591, 352-362.	9.4	39
129	Effect of Cholesterol on Cellular Uptake of Cancer Drugs Pirarubicin and Ellipticine. Journal of Physical Chemistry B, 2016, 120, 3148-3156.	2.6	38
130	One-pot in-situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance. Materials Chemistry and Physics, 2017, 199, 193-202.	4.0	38
131	Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers. Polymers, 2018, 10, 1033.	4.5	38
132	Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect. Journal of Colloid and Interface Science, 2021, 583, 80-88.	9.4	38
133	Saltingâ€out of bioâ€based 2,3â€butanediol from aqueous solutions. Journal of Chemical Technology and Biotechnology, 2017, 92, 122-132.	3.2	37
134	Influence of sulfonated acetone–formaldehyde condensation used as dispersant on low rank coal–water slurry. Energy Conversion and Management, 2012, 64, 139-144.	9.2	36
135	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	5.2	36
136	Improving antioxidant activity of lignin by hydrogenolysis. Industrial Crops and Products, 2018, 125, 228-235.	5.2	36
137	Preparation of porous lignin-derived carbon/carbon nanotube composites by hydrophobic self-assembly and carbonization to enhance lithium storage capacity. Electrochimica Acta, 2019, 303, 1-8.	5.2	36
138	Avermectin loaded nanosphere prepared from acylated alkali lignin showed anti-photolysis property and controlled release performance. Industrial Crops and Products, 2019, 137, 453-459.	5.2	36
139	Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. International Journal of Biological Macromolecules, 2020, 154, 981-988.	7.5	36
140	New insight into lignin aggregation guiding efficient synthesis and functionalization of a lignin nanosphere with excellent performance. Green Chemistry, 2022, 24, 285-294.	9.0	36
141	Mo-Doped/Ni-supported ZnIn ₂ S ₄ -wrapped NiMoO ₄ S-scheme heterojunction photocatalytic reforming of lignin into hydrogen. Green Chemistry, 2022, 24, 2027-2035.	9.0	36
142	Oxidative Degradation of Soda Lignin Assisted by Microwave Irradiation. Chinese Journal of Chemical Engineering, 2010, 18, 695-702.	3.5	35
143	Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation. Journal of Industrial and Engineering Chemistry, 2020, 82, 220-227.	5.8	34
144	Near-Infrared-Activated Efficient Bacteria-Killing by Lignin-Based Copper Sulfide Nanocomposites with an Enhanced Photothermal Effect and Peroxidase-like Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 6479-6488.	6.7	34

#	Article	IF	Citations
145	Facile synthesis and performance of pH/temperature dual-response hydrogel containing lignin-based carbon dots. International Journal of Biological Macromolecules, 2021, 175, 516-525.	7.5	34
146	Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chemical Engineering Science, 2021, 241, 116709.	3.8	34
147	Boosting Surfaceâ€Dominated Sodium Storage of Carbon Anode Enabled by Coupling Graphene Nanodomains, Nitrogenâ€Doping, and Nanoarchitecture Engineering. Advanced Functional Materials, 2022, 32, .	14.9	34
148	<i>In situ</i> coupling of ligninâ€derived carbonâ€encapsulated CoFeâ€Co _{<i>x</i>} N heterojunction for oxygen evolution reaction. AICHE Journal, 2022, 68, .	3.6	34
149	Enhancement clay tolerance of PCE by lignin-based polyoxyethylene ether in montmorillonite-contained paste. Journal of Industrial and Engineering Chemistry, 2017, 49, 168-175.	5.8	33
150	Pristine lignin as a flame retardant in flexible PU foam. Green Chemistry, 2021, 23, 5972-5980.	9.0	33
151	A bluish green barium aluminate phosphor for PDP application. Materials Letters, 2006, 60, 3217-3220.	2.6	32
152	Physicochemical properties of sodium lignosulfonates (NaLS) modified by laccase. Holzforschung, 2012, 66, 825-832.	1.9	32
153	Oxidative degradation of lignin for producing monophenolic compounds. Journal of Fuel Chemistry and Technology, 2014, 42, 677-682.	2.0	32
154	Piezoelectric Nanocellulose Thin Film with Large-Scale Vertical Crystal Alignment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26399-26404.	8.0	32
155	The adsorption and dispersing mechanisms of sodium lignosulfonate on Al ₂ O ₃ particles in aqueous solution. Holzforschung, 2013, 67, 387-394.	1.9	31
156	Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase. Bioresource Technology, 2014, 155, 418-421.	9.6	31
157	Saltingâ€out of acetone, 1â€butanol, and ethanol from dilute aqueous solutions. AICHE Journal, 2015, 61, 3470-3478.	3.6	31
158	Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour. RSC Advances, 2015, 5, 2441-2448.	3.6	31
159	A light-colored hydroxypropyl sulfonated alkali lignin for utilization as a dye dispersant. Holzforschung, 2016, 70, 109-116.	1.9	31
160	Salting-out of 1,3-propanediol from aqueous solutions by inorganic electrolytes. Journal of Chemical Technology and Biotechnology, 2016, 91, 2793-2801.	3.2	30
161	Laccase and Xylanase Incubation Enhanced the Sulfomethylation Reactivity of Alkali Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 1248-1254.	6.7	30
162	Biorefinery Lignosulfonates from Sulfite-Pretreated Softwoods as Dispersant for Graphite. ACS Sustainable Chemistry and Engineering, 2016, 4, 2200-2205.	6.7	30

#	Article	IF	CITATIONS
163	Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources, 2017, 358, 29-38.	7.8	30
164	Separation of aromatic monomers from oxidatively depolymerized products of lignin by combining Sephadex and silica gel column chromatography. Separation and Purification Technology, 2018, 191, 250-256.	7.9	30
165	Preparation and performance of lignin-based waterborne polyurethane emulsion. Industrial Crops and Products, 2021, 170, 113739.	5.2	30
166	Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 694-703.	9.4	30
167	Probing the interactions between lignin and inorganic oxides using atomic force microscopy. Applied Surface Science, 2016, 390, 617-622.	6.1	29
168	Saltingâ€out effect of potassium pyrophosphate (<scp>K₄P₂O₇</scp>) on the separation of biobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology, 2016, 91, 1860-1867.	3.2	29
169	Salting-out extraction systems of ethanol and water induced by high-solubility inorganic electrolytes. Journal of Industrial and Engineering Chemistry, 2017, 56, 145-150.	5.8	29
170	Preparation of Polyetheramineâ€Grafted Lignin and Its Application in UVâ€Resistant Polyurea Coatings. Macromolecular Materials and Engineering, 2019, 304, 1900257.	3.6	29
171	Fabrication of litchi-like lignin/zinc oxide composites with enhanced antibacterial activity and their application in polyurethane films. Journal of Colloid and Interface Science, 2021, 594, 316-325.	9.4	29
172	Preparation of Photoresponsive Azo Polymers Based on Lignin, a Renewable Biomass Resource. ACS Sustainable Chemistry and Engineering, 2015, 3, 1111-1116.	6.7	28
173	Simultaneouly enhanced durability and performance by employing dopamine copolymerized PEDOT with high work function and water-proofness for inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2311-2318.	5.5	28
174	Whitening Sulfonated Alkali Lignin via H ₂ O ₂ /UV Radiation and Its Application As Dye Dispersant. ACS Sustainable Chemistry and Engineering, 2018, 6, 1055-1060.	6.7	28
175	Recycling Cellulase by a pH-Responsive Lignin-Based Carrier through Electrostatic Interaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10679-10686.	6.7	28
176	Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Frontiers of Chemical Science and Engineering, 2019, 13, 59-69.	4.4	28
177	Facile preparation of active lignin capsules for developing self-healing and UV-blocking polyurea coatings. Progress in Organic Coatings, 2020, 138, 105354.	3.9	28
178	Pickering emulsions synergistic-stabilized by amphoteric lignin and SiO2 nanoparticles: Stability and pH-responsive mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124158.	4.7	28
179	Monodispersed Lignin Colloidal Spheres with Tailorable Sizes for Bioâ€Photonic Materials. Small, 2022, 18, e2200671.	10.0	28
180	Evaluation of Steric Repulsive Force in the Aqueous Dispersion System of Dimethomorph Powder with Lignosulfonates via X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 24865-24870.	3.1	27

#	Article	IF	CITATIONS
181	Effect of calcium lignosulfonate on the hydration of the tricalcium aluminate–anhydrite system. Cement and Concrete Research, 2012, 42, 1549-1554.	11.0	27
182	Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Bioresource Technology, 2015, 193, 266-273.	9.6	27
183	Salting-out effect of tripotassium phosphate on the liquid–liquid equilibria of the (water+acetone+1-butanol+ethanol) system and the salting-out recovery. Fluid Phase Equilibria, 2015, 386, 7-12.	2.5	27
184	Sulfonated ethylenediamine–acetone–formaldehyde condensate: preparation, unconventional photoluminescence and aggregation enhanced emission. RSC Advances, 2016, 6, 51257-51263.	3.6	27
185	Separation of a Biofuel: Recovery of Biobutanol by Saltingâ€Out and Distillation. Chemical Engineering and Technology, 2015, 38, 2181-2188.	1.5	26
186	Etherification to improve the performance of lignosulfonate as dye dispersant. RSC Advances, 2016, 6, 70863-70869.	3.6	26
187	Enhancement of lignosulfonate-based polyoxyethylene ether on enzymatic hydrolysis of lignocelluloses. Industrial Crops and Products, 2016, 80, 86-92.	5.2	26
188	Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline. Applied Surface Science, 2017, 426, 287-293.	6.1	26
189	Synthesis of Quaternized Lignin and Its Clay-Tolerance Properties in Montmorillonite-Containing Cement Paste. ACS Sustainable Chemistry and Engineering, 2017, 5, 7743-7750.	6.7	26
190	Dissolution of lignin in green urea aqueous solution. Applied Surface Science, 2017, 425, 736-741.	6.1	26
191	Development of anti-photo and anti-thermal high internal phase emulsions stabilized by biomass lignin as a nutraceutical delivery system. Food and Function, 2019, 10, 355-365.	4.6	26
192	Lignin-Reinforced Nitrile Rubber/Poly(vinyl chloride) Composites via Metal Coordination Interactions. Industrial & Coordination Chemistry Research, 2019, 58, 23114-23123.	3.7	26
193	Impact of nitrogen species and content on the catalytic activity to C–O bond cleavage of lignin over N-doped carbon supported Ru-based catalyst. Fuel, 2020, 278, 118324.	6.4	26
194	Synthesis and evaluation of sulphonated acetone–formaldehyde resin applied as dispersant of coal–water slurry. Energy Conversion and Management, 2007, 48, 204-209.	9.2	25
195	Separation of acetone: From a water miscible system to an efficient aqueous two-phase system. Separation and Purification Technology, 2018, 192, 55-61.	7.9	25
196	Neutral fabrication of UV-blocking and antioxidation lignin-stabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin. Food and Function, 2019, 10, 3543-3555.	4.6	25
197	Enhancement and Mechanism of a Lignin Amphoteric Surfactant on the Production of Cellulosic Ethanol from a High-Solid Corncob Residue. Journal of Agricultural and Food Chemistry, 2019, 67, 6248-6256.	5.2	25
198	Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior. Polymer, 2020, 188, 122147.	3.8	25

#	Article	IF	Citations
199	High internal phase emulsions stabilized with carboxymethylated lignin for encapsulation and protection of environmental sensitive natural extract. International Journal of Biological Macromolecules, 2020, 158, 430-442.	7. 5	25
200	A comprehensive green utilization strategy of lignocellulose from rice husk for the fabrication of high-rate electrochemical zinc ion capacitors. Journal of Cleaner Production, 2021, 327, 129522.	9.3	25
201	Nitrogen-rich accordion-like lignin porous carbon via confined self-assembly template and in-situ mild activation strategy for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 628, 90-99.	9.4	25
202	Effect of Molecular Weight on the Adsorption Characteristics of Lignosulfonates. Journal of Physical Chemistry B, 2011, 115, 14866-14873.	2.6	24
203	Study on Enhancing the Slurry Performance of Coal–Water Slurry Prepared with Low-Rank Coal. Journal of Dispersion Science and Technology, 2015, 36, 1247-1256.	2.4	24
204	Selective cleavage of aryl ether bonds in dimeric lignin model compounds. RSC Advances, 2016, 6, 17880-17887.	3.6	24
205	Visible Light-Driven Reforming of Lignocellulose into H ₂ by Intrinsic Monolayer Carbon Nitride. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44243-44253.	8.0	24
206	Lignosulfonate Separation Using Preparative Column Chromatography. Industrial & Engineering Chemistry Research, 2011, 50, 10792-10799.	3.7	23
207	Horseradish Peroxidase Modification of Sulfomethylated Wheat Straw Alkali Lignin To Improve Its Dispersion Performance. ACS Sustainable Chemistry and Engineering, 2015, 3, 518-523.	6.7	23
208	Investigation of Adsorption Characteristics of Sodium Lignosulfonate on the Surface of Disperse Dye Using a Quartz Crystal Microbalance with Dissipation. Industrial & Engineering Chemistry Research, 2015, 54, 12313-12319.	3.7	23
209	Synthesis of anti-photolysis lignin-based dispersant and its application in pesticide suspension concentrate. RSC Advances, 2020, 10, 13830-13837.	3.6	23
210	Facile synthesis of easily separated and reusable silver nanoparticles/aminated alkaline lignin composite and its catalytic ability. Journal of Colloid and Interface Science, 2021, 587, 334-346.	9.4	23
211	Towards better UV-blocking and antioxidant performance of varnish via additives based on lignin and its colloids. Holzforschung, 2019, 73, 485-491.	1.9	22
212	Long-Acting Ultraviolet-Blocking Mechanism of Lignin: Generation and Transformation of Semiquinone Radicals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5421-5429.	6.7	22
213	Preparation of Light-Colored Lignosulfonate Sunscreen Microcapsules with Strengthened UV-Blocking and Adhesion Performance. ACS Sustainable Chemistry and Engineering, 2022, 10, 9381-9388.	6.7	22
214	Adsorption of different molecular weight lignosulfonates on dimethomorph powder in an aqueous system. Journal of Industrial and Engineering Chemistry, 2012, 18, 532-537.	5.8	21
215	Aggregation of sodium lignosulfonate above a critical temperature. Holzforschung, 2014, 68, 641-647.	1.9	21
216	Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate. Holzforschung, 2016, 70, 21-30.	1.9	21

#	Article	IF	CITATIONS
217	Effect of Urea on the Enzymatic Hydrolysis of Lignocellulosic Substrate and Its Mechanism. Bioenergy Research, 2018, 11, 456-465.	3.9	21
218	Effect of the isoelectric point of pH-responsive lignin-based amphoteric surfactant on the enzymatic hydrolysis of lignocellulose. Bioresource Technology, 2019, 283, 112-119.	9.6	21
219	Robust Conductive Hydrogel with Antibacterial Activity and UV-Shielding Performance. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 17867-17875.	3.7	21
220	Preparation and application performance of lignin-polyurea composite microcapsule with controlled release of avermectin. Colloid and Polymer Science, 2020, 298, 1001-1012.	2.1	21
221	Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery. Microporous and Mesoporous Materials, 2021, 317, 111004.	4.4	21
222	Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors. Journal of Energy Storage, 2022, 53, 105095.	8.1	21
223	Influence of modified lignosulfonate GCL4-1 with different molecular weight on the stability of dimethomorph water based suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 664-668.	4.7	20
224	Fabrication of High-Concentration Aqueous Graphene Suspensions Dispersed by Sodium Lignosulfonate and Its Mechanism. Journal of Physical Chemistry C, 2015, 119, 23221-23230.	3.1	20
225	Fabrication of Lignosulfonate Vesicular Reverse Micelles to Immobilize Horseradish Peroxidase. Industrial & Description of Lignosulfonate Vesicular Reverse Micelles to Immobilize Horseradish Peroxidase.	3.7	20
226	Highly efficient evaporation method to prepare pH-responsive lignin-hollow-nanosphere with controllable size and its application in oral drug delivery. Industrial Crops and Products, 2021, 162, 113230.	5.2	20
227	Extraction of Noncondensed Lignin from Poplar Sawdusts with <i>p</i> -Toluenesulfonic Acid and Ethanol. Journal of Agricultural and Food Chemistry, 2021, 69, 10838-10847.	5.2	20
228	Fabrication of a Lignin-Copper Sulfide-Incorporated PVA Hydrogel with Near-Infrared-Activated Photothermal/Photodynamic/Peroxidase-like Performance for Combating Bacteria and Biofilms. ACS Biomaterials Science and Engineering, 2022, 8, 560-569.	5.2	20
229	Isolation of lignosulfonate with low polydispersity index. Chinese Chemical Letters, 2010, 21, 1479-1481.	9.0	19
230	Effects of pH on aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions. Journal of Polymer Research, 2015, 22, 1.	2.4	19
231	Nonconventional photoluminescence from sulfonated acetone–formaldehyde condensate with aggregation-enhanced emission. RSC Advances, 2016, 6, 47632-47636.	3.6	19
232	Conductivity Enhancement of Poly(3,4-ethylenedioxythiophene)/Lignosulfonate Acid Complexes via Pickering Emulsion Polymerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 7193-7199.	6.7	19
233	Effect of cationic surfactant cetyltrimethylammonium bromide on the enzymatic hydrolysis of cellulose. Cellulose, 2017, 24, 61-68.	4.9	19
234	Electrolyte engineering for a highly stable, rechargeable hybrid aqueous battery. Journal of Energy Storage, 2019, 26, 100920.	8.1	19

#	Article	IF	CITATIONS
235	Activation of Enzymatic Hydrolysis Lignin by NaOH/Urea Aqueous Solution for Enhancing Its Sulfomethylation Reactivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 1120-1128.	6.7	19
236	Preparation of self-dispersed lignin-based drug-loaded material and its application in avermectin nano-formulation. International Journal of Biological Macromolecules, 2020, 151, 421-427.	7.5	19
237	Atomic Force Microscopy Measurement in the Lignosulfonate/Inorganic Silica System: From Dispersion Mechanism Study to Product Design. Engineering, 2021, 7, 1140-1148.	6.7	19
238	Study on the Antioxidant Activity of Lignin and Its Application Performance in SBS Elastomer. Industrial & Engineering Chemistry Research, 2021, 60, 790-797.	3.7	19
239	Sustainable production of lignin-derived porous carbons for high-voltage electrochemical capacitors. Chemical Engineering Science, 2022, 255, 117672.	3.8	19
240	Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Advances, 2014, 4, 53855-53863.	3.6	18
241	Effect of aggregation behavior and phenolic hydroxyl group content on the performance of lignosulfonate doped PEDOT as a hole extraction layer in polymer solar cells. RSC Advances, 2015, 5, 90913-90921.	3.6	18
242	Biobutanol recovery from model solutions/fermentation broth using tripotassium phosphate. Biochemical Engineering Journal, 2016, 115, 85-92.	3.6	18
243	A novel and highly efficient polymerization of sulfomethylated alkaline lignins via alkyl chain cross-linking method. Holzforschung, 2016, 70, 297-304.	1.9	18
244	Biobutanol recovery from model solutions using potassium pyrophosphate. Journal of Chemical Technology and Biotechnology, 2017, 92, 1229-1235.	3.2	18
245	Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst. Energy Conversion and Management, 2018, 156, 130-139.	9.2	18
246	Preparation of a Low Reducing Effect Sulfonated Alkali Lignin and Application as Dye Dispersant. Polymers, 2018, 10, 982.	4.5	18
247	Structural regulation of lignin/silica nanocomposites by altering the content of quaternary ammonium groups grafted into softwood kraft lignin. Industrial Crops and Products, 2020, 144, 112039.	5.2	18
248	Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO. Industrial Crops and Products, 2020, 155, 112773.	5.2	18
249	Effects of Cationic Cetyltrimethylammonium Bromide on the Aggregation Behavior of Sodium Lignosulfonate (NaLS) in Concentrated Solutions and Preparation of Uniform Lignosulfonate-Based Colloidal Spheres. Journal of Agricultural and Food Chemistry, 2020, 68, 9451-9460.	5.2	18
250	Influence of molecular mass of lignosulfonates on the resulting surface charges of solid particles. International Journal of Biological Macromolecules, 2013, 52, 300-304.	7.5	17
251	Polystyrenesulfonate Dispersed Dopamine with Unexpected Stable Semiquinone Radical and Electrochemical Behavior: A Potential Alternative to PEDOT:PSS. ACS Sustainable Chemistry and Engineering, 2017, 5, 460-468.	6.7	17
252	Ligninâ€Reinforced Ethyleneâ€Propyleneâ€Diene Copolymer Elastomer via Hydrogen Bonding Interactions. Macromolecular Materials and Engineering, 2019, 304, 1800689.	3.6	17

#	Article	IF	CITATIONS
253	Physicochemical Behavior of Sulphonated Acetone-Formaldehyde Resin and Naphthalene Sulfonate-Formaldehyde Condensate in Coal-Water Interface. Journal of Dispersion Science and Technology, 2009, 30, 353-360.	2.4	16
254	Rheological Behavior Investigation of Concentrated Coal-Water Suspension. Journal of Dispersion Science and Technology, 2010, 31, 838-843.	2.4	16
255	Preparation of slow release nanopesticide microspheres from benzoyl lignin. Holzforschung, 2018, 72, 599-607.	1.9	16
256	Preparation of novel all-lignin microcapsules via interfacial cross-linking of pickering emulsion. Industrial Crops and Products, 2021, 167, 113468.	5.2	16
257	Improving Rheology and Enzymatic Hydrolysis of High-Solid Corncob Slurries by Adding Lignosulfonate and Long-Chain Fatty Alcohols. Journal of Agricultural and Food Chemistry, 2014, 62, 8430-8436.	5.2	15
258	Light scattering characterization of lignosulfonate structure in saline solutions. Holzforschung, 2015, 69, 377-383.	1.9	15
259	Sulfobutylated Lignosulfonate with Ultrahigh Sulfonation Degree and Its Dispersion Property in Low-Rank Coal-Water Slurry. Journal of Dispersion Science and Technology, 2016, 37, 472-478.	2.4	15
260	Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols. Bioresource Technology, 2016, 200, 48-54.	9.6	15
261	Effect of Polycarboxylic Acid Used as High-Performance Dispersant on Low-Rank Coal-Water Slurry. Journal of Dispersion Science and Technology, 2016, 37, 415-422.	2.4	15
262	Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe. Journal of Agricultural and Food Chemistry, 2019, 67, 1044-1051.	5.2	15
263	Designing the effective microstructure of lignin-based porous carbon substrate to inhibit the capacity decline for SnO2 anode. Industrial Crops and Products, 2021, 161, 113179.	5.2	15
264	Separation of short-chain glucan oligomers from molten salt hydrate and hydrolysis to glucose. Green Chemistry, 2021, 23, 4114-4124.	9.0	15
265	Lignin â€" a promising biomass resource. Tappi Journal, 2018, 17, 125-141.	0.5	15
266	Mild hydrodeoxygenation of lignin-derived bio-oils to hydrocarbons over bifunctional ZrP2O7-Ni12P5 catalysts. Fuel, 2022, 313, 123044.	6.4	15
267	Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions. Green Chemistry, 2022, 24, 846-857.	9.0	15
268	Determination of absolute molecular weight of sodium lignosulfonates (NaLS) by laser light scattering (LLS). Holzforschung, 2013, 67, 265-271.	1.9	14
269	Poly(3,4-ethylenedioxythiophene):sulfonated acetone-formaldehyde: preparation, characterization and performance as a hole injection material. Journal of Materials Chemistry C, 2016, 4, 8077-8085.	5.5	14
270	Pretreatment of Miscanthus by NaOH/Urea Solution at Room Temperature for Enhancing Enzymatic Hydrolysis. Bioenergy Research, 2016, 9, 335-343.	3.9	14

#	Article	IF	CITATIONS
271	Relationship between the hydrophilicity of lignin dispersants and their performance towards pesticide particles. Holzforschung, 2016, 70, 653-660.	1.9	14
272	Using temperature-responsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling. Bioresource Technology, 2017, 243, 1141-1148.	9.6	14
273	Oxidative depolymerization of lignin improved by enzymolysis pretreatment with laccase. Journal of Energy Chemistry, 2018, 27, 801-805.	12.9	14
274	Saltingâ€out extraction of bioâ€based isobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology, 2018, 93, 372-384.	3.2	14
275	Curcumin-loaded high internal phase emulsions stabilized with lysine modified lignin: a biological agent with high photothermal protection and antibacterial properties. Food and Function, 2021, 12, 7469-7479.	4.6	14
276	Insights into Gas-Exfoliation and the In-Situ Template Mechanism of Zinc Compound for Lignin-Derived Supercapacitive Porous Carbon. ACS Applied Energy Materials, 2021, 4, 13617-13626.	5.1	14
277	Multi-stage explosion of lignin: a new horizon for constructing defect-rich carbon towards advanced lithium ion storage. Green Chemistry, 2022, 24, 5941-5951.	9.0	14
278	Chemical modification of lignin assisted by microwave irradiation. Holzforschung, 2011, 65, .	1.9	13
279	Effects of concentration and temperature on the rheological behavior of concentrated sodium lignosulfonate (NaLS) solutions. Holzforschung, 2015, 69, 265-271.	1.9	13
280	Sugaring-Out Effects of Sucrose and Glucose on the Liquid–Liquid Equilibria for the (Water +) Tj ETQq0 0 0 rg	BT <u>/</u> Overlo	ock 10 Tf 50 3
281	Improving Efficiency of Blue Organic Light-Emitting Diode with Sulfobutylated Lignin Doped PEDOT as Anode Buffer Layer. ACS Sustainable Chemistry and Engineering, 2016, 4, 2004-2011.	6.7	13
282	Effect of sodium dodecyl sulfate and cetyltrimethylammonium bromide catanionic surfactant on the enzymatic hydrolysis of Avicel and corn stover. Cellulose, 2017, 24, 669-676.	4.9	13
283	Understanding the Effect of the Complex of Lignosulfonate and Cetyltrimethylammonium Bromide on the Enzymatic Digestibility of Cellulose. Energy & Energy & 17, 31, 672-678.	5.1	13
284	Synthesis of a Hindered Amine-Grafted Lignin-Based Emulsifier and Its Application in a Green Emulsifiable Concentrate. Journal of Agricultural and Food Chemistry, 2019, 67, 11129-11136.	5.2	13
285	Effect of structure of technical lignin on the electrochemical performance of lignin-derived porous carbon from K ₂ CO ₃ activation. Holzforschung, 2020, 74, 293-302.	1.9	13
286	Incorporation of nano lignin reverse micelles on the transparency, UV-blocking and rheological properties of high-density polyethylene films. Holzforschung, 2020, 74, 513-521.	1.9	13
287	One-pot preparation of hydrophobic lignin/SiO2 nanoparticles and its reinforcing effect on HDPE. International Journal of Biological Macromolecules, 2021, 180, 523-532.	7.5	13
288	Preparation of carboxymethylated lignin-based multifunctional flocculant and its application for copper-containing wastewater. European Polymer Journal, 2022, 164, 110967.	5.4	13

#	Article	IF	Citations
289	Characterization of Superfine Sr2CeO4 Powder Prepared by Microemulsion-Heating Method. Journal of Rare Earths, 2006, 24, 289-293.	4.8	12
290	Fabrication and properties of low crystallinity nanofibrillar cellulose and a nanofibrillar cellulose–graphene oxide composite. RSC Advances, 2015, 5, 67568-67573.	3.6	12
291	Enhancing Efficiency and Durability of Inverted Perovskite Solar Cells with Phenol/Unsaturated Carbon–Carbon Double Bond Dual-Functionalized Poly(3,4-ethylenedioxythiophene) Hole Extraction Layer. ACS Sustainable Chemistry and Engineering, 2019, 7, 961-968.	6.7	12
292	Adsorption-Enhanced Glucan Oligomer Production from Cellulose Hydrolysis over Hyper-Cross-Linked Polymer in Molten Salt Hydrate. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52082-52091.	8.0	12
293	Beyond biodegradation: Chemical upcycling of poly(lactic acid) plastic waste to methyl lactate catalyzed by quaternary ammonium fluoride. Journal of Catalysis, 2021, 402, 61-71.	6.2	12
294	Effect of Molecular Weight of Polycarboxylate-type Superplasticizer on the Rheological Properties of Cement Pastes. Polymers and Polymer Composites, 2012, 20, 725-736.	1.9	11
295	Aggregation and adsorption behaviors of carboxymethylated lignin (CML) in aqueous solution. Holzforschung, 2013, 67, 379-385.	1.9	11
296	Enhancement of Recyclable pH-Responsive Lignin-Grafted Phosphobetaine on Enzymatic Hydrolysis of Lignocelluloses. ACS Sustainable Chemistry and Engineering, 2019, 7, 7926-7931.	6.7	11
297	Wood-inspired strategy to toughen transparent cellulose nanofibril films. Carbohydrate Polymers, 2021, 259, 117759.	10.2	11
298	Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites. International Journal of Biological Macromolecules, 2021, 183, 1450-1458.	7.5	11
299	A highly efficient dispersant from black liquor for carbendazim suspension concentrate: Preparation, selfâ€assembly behavior and investigation of dispersion mechanism. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
300	Effect of Benzyl Functionality on Microwave-Assisted Cleavage of C _α –C _β Bonds in Lignin Model Compounds. Journal of Physical Chemistry C, 2017, 121, 1537-1545.	3.1	10
301	Thermo-Responsive Behavior of Enzymatic Hydrolysis Lignin in the Ethanol/Water Mixed Solvent and Its Application in the Controlled Release of Pesticides. ACS Sustainable Chemistry and Engineering, 2021, 9, 15634-15640.	6.7	10
302	Sodium Preâ€Intercalated Carbon/V ₂ O ₅ Constructed by Sustainable Sodium Lignosulfonate for Stable Cathodes in Zincâ€Ion Batteries: A Comprehensive Study. ChemSusChem, 2022, 15, .	6.8	10
303	Synthesis of a trimeric lignin model compound composed of \hat{l} ±-O-4 and \hat{l} ²-O-4 linkages under microwave irradiation. Chinese Chemical Letters, 2013, 24, 1091-1094.	9.0	9
304	Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal. Water Science and Technology, 2015, 71, 390-396.	2.5	9
305	Slow relaxation mode of sodium lignosulfonate in saline solutions. Holzforschung, 2015, 69, 17-23.	1.9	9
306	High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale. Frontiers in Energy Research, 2015, 3, .	2.3	9

#	Article	IF	CITATIONS
307	Layer-by-Layer Self-Assembled Films of a Lignin-based Polymer through Hydrogen Bonding. ACS Sustainable Chemistry and Engineering, 2015, 3, 1215-1220.	6.7	9
308	Preparation of water-dispersive poly(3,4-ethylenedioxythiophene) (PEDOT) conductive nanoparticles in lignosulfonic acid solution. Holzforschung, 2015, 69, 539-545.	1.9	9
309	1,3,5â€triazine crosslinked 2,5â€dibromohydroquinone as new holeâ€transport material in polymer lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 429-435.	1.8	9
310	Using highly recyclable sodium caseinate to enhance lignocellulosic hydrolysis and cellulase recovery. Bioresource Technology, 2020, 304, 122974.	9.6	9
311	Effect of Temperature on Polyelectrolyte Expansion of Lignosulfonate. BioResources, 2014, 10, .	1.0	8
312	Enhancing enzymatic hydrolysis of crystalline cellulose and lignocellulose by adding long-chain fatty alcohols. Cellulose, 2014, 21, 3361-3369.	4.9	8
313	Characterization of the adsorption properties of a phosphorylated kraft lignin-based polymer at the solid/liquid interface by the QCM-D approach. Holzforschung, 2016, 70, 937-945.	1.9	8
314	Tracing cellulase components in hydrolyzate during the enzymatic hydrolysis of corncob residue and its analysis. Bioresource Technology Reports, 2018, 4, 137-144.	2.7	8
315	Effect of Molecular Weight on the Reactivity and Dispersibility of Sulfomethylated Alkali Lignin Modified by Horseradish Peroxidase. ACS Sustainable Chemistry and Engineering, 2018, 6, 14197-14202.	6.7	8
316	Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to Produce Aromatic Monomers. Waste and Biomass Valorization, 2020, 11, 4481-4489.	3.4	8
317	Preparation of high molecular weight pH-responsive lignin-polyethylene glycol (L-PEG) and its application in enzymatic saccharification of lignocelluloses. Cellulose, 2020, 27, 755-767.	4.9	8
318	The synthesis of a UCST-type zwitterionic polymer for the efficient recycling of cellulase at room temperature. Green Chemistry, 2021, 23, 2738-2746.	9.0	8
319	Dynamic Surface Tension and Adsorption Kinetics of Sodium Lignosulfonate Aqueous Solutions. Journal of Dispersion Science and Technology, 2013, 34, 709-715.	2.4	7
320	Comparisons of high titer ethanol production and lignosulfonate properties by SPORL pretreatment of lodgepole pine at two temperatures. RSC Advances, 2014, 4, 27030-27038.	3.6	7
321	Effects of Modified Sodium Lignosulfonate on Rheological Properties of Coal–Water Slurry with Low-Rank Coal. Journal of Dispersion Science and Technology, 2014, 35, 1675-1684.	2.4	7
322	Improved performance of the rechargeable hybrid aqueous battery at near full state-of-charge. Electrochimica Acta, 2018, 271, 481-489.	5.2	7
323	Synergetic Effect of Perfluorooctanoic Acid on the Preparation of Poly(3,4â€ethylenedioxythiophene): Lignosulfonate Aqueous Dispersions with High Film Conductivity. ChemistrySelect, 2019, 4, 11406-11412.	1.5	7
324	A Simple and Rapid Method to Determine Sulfonation Degree of Lignosulfonates. Bioenergy Research, 2019, 12, 260-266.	3.9	7

#	Article	IF	CITATIONS
325	Kraft lignin grafted with isopentenol polyoxyethylene ether and the dispersion performance. International Journal of Biological Macromolecules, 2020, 150, 1147-1154.	7. 5	7
326	Structure–Adsorption Behavior–Dispersion Property Relationship of Alkyl Chain Cross-Linked Lignosulfonate with Different Molecular Weights. ACS Omega, 2020, 5, 4836-4843.	3.5	7
327	Design principles of lead-carbon additives toward better lead-carbon batteries. Current Opinion in Electrochemistry, 2021, 30, 100802.	4.8	7
328	Aqueous Phase Catalytic Conversion of Ethanol to Higher Alcohols over NiSn Bimetallic Catalysts Encapsulated in Nitrogen-Doped Biorefinery Lignin-Based Carbon. Industrial & Engineering Chemistry Research, 2021, 60, 17959-17969.	3.7	7
329	Production of water-soluble sugar from cellulose and corn stover via molten salt hydrate impregnation and separation. Cellulose, 2022, 29, 879-891.	4.9	7
330	Lignin modified <scp>PBAT</scp> composites with enhanced strength based on interfacial dynamic bonds. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
331	Radical synthesis of tetrameric lignin model compound. Chinese Chemical Letters, 2015, 26, 980-982.	9.0	6
332	Insight into the dispersive mechanism of Carboxylated Nanofibrilllated cellulose for individual montmorillonite in water. Composites Part B: Engineering, 2019, 177, 107399.	12.0	6
333	Pyrolytic gas exfoliation and template mediation inducing defective mesoporous carbon network from industrial lignin for advanced lithium-ion storage. Industrial Crops and Products, 2022, 180, 114748.	5.2	6
334	Adsorption characteristics of carboxymethylated lignin at a hydrophobic solid/water interface. Iranian Polymer Journal (English Edition), 2014, 23, 47-52.	2.4	5
335	Influence of carboxylic group content on the solution behavior of carboxymethylated lignin (CML) in water. Holzforschung, 2015, 69, 25-32.	1.9	5
336	Liquid–Liquid Extraction of Biobased Isobutanol from an Aqueous Solution. Journal of Chemical & Liquid–Engineering Data, 2019, 64, 2350-2356.	1.9	5
337	Investigation on the binding force between lignin and magnetic Fe3O4 nanoparticles with AFM. Applied Surface Science, 2021, 538, 148146.	6.1	5
338	Effect of the Interfacial Agents with Different Types of Hydrophilic Functional Groups on the Rheological Properties of Coal-Water Slurry. Journal of Dispersion Science and Technology, 2013, 34, 1646-1655.	2.4	4
339	Amination of black liquor and the application in the ready-mixed wet mortar. Environmental Technology (United Kingdom), 2018, 39, 44-50.	2.2	4
340	Preparation and release properties of flufiprole-loaded microcapsules with core status of solid particles, solution droplets and oil suspending agent. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 171-178.	2.2	4
341	Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification. Applied Biochemistry and Biotechnology, 2020, 191, 981-995.	2.9	4
342	In situ synthesis of "brick and mortar―type lignin-derived carbon/TiO2 composite with a remarkable photocatalytic performance. Journal of Industrial and Engineering Chemistry, 2021, 97, 216-225.	5.8	4

#	Article	IF	CITATIONS
343	pH EFFECT ON ELECTROSTATIC LAYER-BY-LAYER SELF-ASSEMBLY OF SODIUM LIGNOSULFONATE. Acta Polymerica Sinica, 2010, 010, 699-704.	0.0	4
344	Transparent montmorillonite/cellulose nanofibril nanocomposite films: the influence of exfoliation degree and interfacial interaction. Cellulose, 2022, 29, 7111-7124.	4.9	4
345	Perovskite Solar Cells: Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties (Adv. Energy Mater. 6/2017). Advanced Energy Materials, 2017, 7, .	19.5	3
346	Using a linear pH-responsive zwitterionic copolymer to recover cellulases in enzymatic hydrolysate and to enhance the enzymatic hydrolysis of lignocellulose. Cellulose, 2019, 26, 6725-6738.	4.9	3
347	Pretreatment of the corncob enzymatic residue with p-toluenesulfonic acid and valorization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 296-305.	4.7	3
348	Green chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 995-1077.	4.4	3
349	Effect of cellulase on the UCST behavior of sulfobetaine zwitterionic surfactants and the cellulase recovery mechanism. Sustainable Energy and Fuels, 2021, 5, 750-757.	4.9	3
350	Lignin-based materials with UV-blocking property. , 2021, , 271-290.		1
351	Magnetization of aminated lignin and characterization. Tappi Journal, 2019, 18, 21-27.	0.5	1
352	Effect of superplasticisers on the surface characteristics of fly ash. Magazine of Concrete Research, 2013, 65, 623-628.	2.0	0
353	Adsorption performance of magnetic aminated lignin for the removal of Cu(II) and Cd(II). Tappi Journal, 2019, 18, 9-18.	0.5	O