João F Passos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1804073/publications.pdf

Version: 2024-02-01

44069 85541 13,796 74 48 71 citations h-index g-index papers 85 85 85 14069 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
2	Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 2017, 8, 14532.	12.8	1,008
3	Feedback between p21 and reactive oxygen production is necessary for cell senescence. Molecular Systems Biology, 2010, 6, 347.	7.2	754
4	Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456.	6.1	697
5	Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications, 2012, 3, 708.	12.8	693
6	Cellular senescence drives age-dependent hepatic steatosis. Nature Communications, 2017, 8, 15691.	12.8	673
7	Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence. PLoS Biology, 2007, 5, e110.	5.6	612
8	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	12.8	596
9	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	7.8	527
10	Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. Journal of Cell Science, 2008, 121, 1046-1053.	2.0	399
11	Mitochondrial inner membrane permeabilisation enables mt <scp>DNA</scp> release during apoptosis. EMBO Journal, 2018, 37, .	7.8	313
12	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	7.8	307
13	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	16.2	293
14	DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?. Nucleic Acids Research, 2007, 35, 7505-7513.	14.5	285
15	Downregulation of Multiple Stress Defense Mechanisms During Differentiation of Human Embryonic Stem Cells. Stem Cells, 2008, 26, 455-464.	3.2	240
16	Telomeres and Cell Senescence - Size Matters Not. EBioMedicine, 2017, 21, 14-20.	6.1	238
17	A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metabolism, 2018, 27, 1081-1095.e10.	16.2	238
18	Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 2018, 170, 2-9.	4.6	234

#	Article	IF	CITATIONS
19	Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Letters, 2019, 593, 1566-1579.	2.8	209
20	Quantitative assessment of markers for cell senescence. Experimental Gerontology, 2010, 45, 772-778.	2.8	208
21	Telomere dysfunction in ageing and age-related diseases. Nature Cell Biology, 2022, 24, 135-147.	10.3	194
22	Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes and Development, 2020, 34, 428-445.	5.9	188
23	Wholeâ€body senescent cell clearance alleviates ageâ€related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20, e13296.	6.7	186
24	Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell, 2019, 18, e12945.	6.7	156
25	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annual Review of Pharmacology and Toxicology, 2021, 61, 779-803.	9.4	151
26	Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence?. Longevity $\&$ Healthspan, 2014, 3, 1.	6.7	150
27	Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO Journal, 2019, 38, e101982.	7.8	136
28	DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1124-L1137.	2.9	128
29	Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. , 2018, 183, 34-49.		128
30	Mitochondria, telomeres and cell senescence. Experimental Gerontology, 2005, 40, 466-472.	2.8	125
31	Mitochondria: Are they causal players in cellular senescence?. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1373-1379.	1.0	125
32	Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nature Communications, 2020, 11, 4289.	12.8	125
33	Reducing Senescent Cell Burden in Aging and Disease. Trends in Molecular Medicine, 2020, 26, 630-638.	6.7	102
34	Neutrophils induce paracrine telomere dysfunction and senescence in ROSâ€dependent manner. EMBO Journal, 2021, 40, e106048.	7.8	101
35	Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell, 2021, 184, 5506-5526.	28.9	95
36	The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 2019, 5, eaaw0254.	10.3	93

#	Article	IF	Citations
37	On the evolution of cellular senescence. Aging Cell, 2020, 19, e13270.	6.7	84
38	Clearance of senescent cells during cardiac ischemia–reperfusion injury improves recovery. Aging Cell, 2020, 19, e13249.	6.7	79
39	Cellular senescence: all roads lead to mitochondria. FEBS Journal, 2023, 290, 1186-1202.	4.7	79
40	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapyâ€Related Bone Loss. Journal of Bone and Mineral Research, 2020, 35, 1119-1131.	2.8	74
41	Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends in Biochemical Sciences, 2019, 44, 996-1008.	7.5	71
42	Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nature Communications, 2020, 11, 307.	12.8	62
43	Characterization of cellular senescence in aging skeletal muscle. Nature Aging, 2022, 2, 601-615.	11.6	61
44	Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight, 2020, 5,	5.0	60
45	Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies?. BioEssays, 2017, 39, 1600235.	2.5	59
46	Rapamycin improves healthspan but not inflammaging in <i>nfleb1</i> ^{â^'/â^'} mice. Aging Cell, 2019, 18, e12882.	6.7	59
47	Mitochondria and ageing: winning and losing in the numbers game. BioEssays, 2007, 29, 908-917.	2.5	58
48	Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radical Biology and Medicine, 2019, 132, 3-10.	2.9	52
49	A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations. PLoS ONE, 2012, 7, e32117.	2.5	50
50	Premature senescence of mesothelial cells is associated with non-telomeric DNA damage. Biochemical and Biophysical Research Communications, 2007, 362, 707-711.	2.1	46
51	Depletion of mitochondria in mammalian cells through enforced mitophagy. Nature Protocols, 2017, 12, 183-194.	12.0	42
52	Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochemical and Biophysical Research Communications, 2008, 366, 793-799.	2.1	41
53	Mechanisms driving the ageing heart. Experimental Gerontology, 2018, 109, 5-15.	2.8	41
54	Cellular senescence: unravelling complexity. Age, 2009, 31, 353-363.	3.0	40

#	Article	IF	CITATIONS
55	Therapeutic Potential of Senolytics in Cardiovascular Disease. Cardiovascular Drugs and Therapy, 2022, 36, 187-196.	2.6	40
56	Targeted clearance of <i>p21</i> p―but not <i>p16</i> â€positive senescent cells prevents radiationâ€induced osteoporosis and increased marrow adiposity. Aging Cell, 2022, 21, e13602.	6.7	40
57	Antiâ€inflammatory treatment rescues memory deficits during aging in <i>nfkb1</i> ^{â^'/â^'} mice. Aging Cell, 2020, 19, e13188.	6.7	38
58	Reactive Oxygen Species Detection in Senescent Cells. Methods in Molecular Biology, 2019, 1896, 21-29.	0.9	36
59	Telomere Dysfunction and Senescence-associated Pathways in Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 929-932.	5.6	34
60	Detecting senescence: a new method for an old pigment. Aging Cell, 2017, 16, 432-434.	6.7	30
61	The Relationship between the Aging- and Photo-Dependent T414G Mitochondrial DNA Mutation with Cellular Senescence and Reactive Oxygen Species Production in Cultured Skin Fibroblasts. Journal of Investigative Dermatology, 2009, 129, 1361-1366.	0.7	24
62	Mitochondrial dysfunction and cell senescence â€" skin deep into mammalian aging. Aging, 2012, 4, 74-75.	3.1	22
63	Moderate Exercise Inhibits Age-Related Inflammation, Liver Steatosis, Senescence, and Tumorigenesis. Journal of Immunology, 2021, 206, 904-916.	0.8	20
64	Measuring Reactive Oxygen Species in Senescent Cells. Methods in Molecular Biology, 2013, 965, 253-263.	0.9	16
65	Robust Multiparametric Assessment of Cellular Senescence. Methods in Molecular Biology, 2013, 965, 409-419.	0.9	12
66	Cell Sorting of Young and Senescent Cells. Methods in Molecular Biology, 2013, 1048, 31-47.	0.9	12
67	Bone Marrow Adiposity in Models of Radiation- and Aging-Related Bone Loss Is Dependent on Cellular Senescence. Journal of Bone and Mineral Research, 2020, 37, 997-1011.	2.8	11
68	Telomeres: beacons of autocrine and paracrine DNA damage during skin aging. Cell Cycle, 2020, 19, 532-540.	2.6	8
69	Demystifying the role of mitochondria in senescence. Molecular and Cellular Oncology, 2016, 3, e1162896.	0.7	4
70	Retrograde Response, Oxidative Stress, and Cellular Senescence. , 2008, , 39-52.		2
71	Senolytic drugs: Beyond the promise and the hype. Mechanisms of Ageing and Development, 2022, 202, 111631.	4.6	2
72	Telomeres, Senescence, Oxidative Stress, and Heterogeneity. , 2008, , 43-56.		1

 #	Article	IF	CITATIONS
73	Telomeres Shortening: A Mere Replicometer?. Healthy Ageing and Longevity, 2016, , 97-115.	0.2	0
74	Mitochondria: Potential Targets for Interventions to Counteract Senescence. Healthy Ageing and Longevity, 2020, , 201-222.	0.2	0