He-Gen Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1803469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel MOFâ€Derived Co@N Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting. Advanced Materials, 2018, 30, 1705431.	21.0	667
2	Solvatochromic Behavior of a Nanotubular Metalâ^'Organic Framework for Sensing Small Molecules. Journal of the American Chemical Society, 2011, 133, 4172-4174.	13.7	649
3	Two Lanthanide Metal–Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal Ions and Small Organic Molecules. ACS Applied Materials & Interfaces, 2017, 9, 1629-1634.	8.0	354
4	Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chemical Engineering Journal, 2018, 333, 49-57.	12.7	313
5	Two New Luminescent Cd(II)-Metal–Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe ³⁺ , Anions CrO ₄ ^{2–} , and Cr ₂ O ₇ ^{2–} in Aqueous Solution. Crystal Growth and Design, 2017, 17. 67-72.	3.0	295
6	Two luminescent Zn(<scp>ii</scp>) metal–organic frameworks for exceptionally selective detection of picric acid explosives. Chemical Communications, 2015, 51, 8300-8303.	4.1	227
7	Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8, 6144-6182.	10.3	207
8	Self-Assembly of Interpenetrating Coordination Nets Formed from Interpenetrating Cationic and Anionic Three-Dimensional Diamondoid Cluster Coordination Polymers. Angewandte Chemie - International Edition, 2004, 43, 5776-5779.	13.8	176
9	MOF-derived Fe,Co@N–C bifunctional oxygen electrocatalysts for Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9355-9363.	10.3	151
10	MOF-derived Co-MOF,O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–air batteries and water-splitting. Journal of Energy Chemistry, 2021, 56, 290-298.	12.9	117
11	A porous metal–organic framework based on Zn ₆ O ₂ clusters: chemical stability, gas adsorption properties and solvatochromic behavior. Chemical Communications, 2013, 49, 555-557.	4.1	112
12	H-Bonding Interactions Induced Two Isostructural Cd(II) Metal–Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives. Inorganic Chemistry, 2016, 55, 10999-11005.	4.0	109
13	Syntheses, Structures, and Photoluminescence of Five New Metalâ `Organic Frameworks Based on Flexible Tetrapyridines and Aromatic Polycarboxylate Acids. Crystal Growth and Design, 2010, 10, 2676-2684.	3.0	102
14	A Europium-based MOF Fluorescent Probe for Efficiently Detecting Malachite Green and Uric Acid. Inorganic Chemistry, 2020, 59, 7181-7187.	4.0	99
15	Metal–organic frameworks constructed from flexible V-shaped ligands: adjustment of the topology, interpenetration and porosity via a solvent system. Chemical Communications, 2012, 48, 10016.	4.1	96
16	Effective adsorption of Congo red by a MOF-based magnetic material. Dalton Transactions, 2019, 48, 4650-4656.	3.3	96
17	Six New Metalâ^'Organic Frameworks Based on Polycarboxylate Acids and V-shaped Imidazole-Based Synthon: Syntheses, Crystal Structures, and Properties. Inorganic Chemistry, 2011, 50, 2404-2414.	4.0	89
18	A Highly Solvent table Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small, 2018, 14, e1703873.	10.0	88

#	Article	IF	CITATIONS
19	A microporous metal–organic framework with FeS2 topology based on [Zn6(μ6-O)] cluster for reversible sensing of small molecules. Chemical Communications, 2012, 48, 7967.	4.1	85
20	Syntheses, Characterizations, and Properties of Six Metalâ~'Organic Complexes Based on Flexible Ligand 5-(4-Pyridyl)-methoxyl Isophthalic Acid. Crystal Growth and Design, 2010, 10, 4176-4183.	3.0	84
21	Effect of Carboxylate Coligands with Different Rigidity on Supramolecular Architectures Based on One Rigid Didentate Linear Ligand. Crystal Growth and Design, 2012, 12, 403-413.	3.0	82
22	Three self-penetrated, interlocked, and polycatenated supramolecular isomers via one-pot synthesis and crystallization. Chemical Communications, 2012, 48, 681-683.	4.1	78
23	Three Cd(II) MOFs with Different Functional Groups: Selective CO ₂ Capture and Metal Ions Detection. Inorganic Chemistry, 2018, 57, 5232-5239.	4.0	78
24	Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol. Chemical Engineering Journal, 2017, 323, 74-83.	12.7	77
25	Photodegradation of Some Organic Dyes over Two Metal–Organic Frameworks with Especially High Efficiency for Safranine T. Crystal Growth and Design, 2017, 17, 1293-1298.	3.0	75
26	Syntheses, Structures, and Characteristics of Four New Metal–Organic Frameworks Based on Flexible Tetrapyridines and Aromatic Polycarboxylate Acids. Crystal Growth and Design, 2012, 12, 3426-3435.	3.0	74
27	[WS4Cu3l2]â~' and [WS4Cu4]2+ secondary building units formed a metal–organic framework: Large tubes in a highly interpenetrated system. Chemical Communications, 2011, 47, 2919.	4.1	73
28	Series of Metal–Organic Frameworks Including Novel Architectural Features Based on a Star-like Tri(4-pyridylphenyl)amine Ligand. Crystal Growth and Design, 2013, 13, 1961-1969.	3.0	71
29	Three New Heterothiometallic Cluster Polymers with Fascinating Topologies. Inorganic Chemistry, 2009, 48, 5772-5778.	4.0	70
30	Three Highly Stable Cobalt MOFs Based on "Y―Shaped Carboxylic Acid: Synthesis and Absorption of Anionic Dyes. Inorganic Chemistry, 2016, 55, 8816-8821.	4.0	70
31	Exploring the Detection of Metal Ions by Tailoring the Coordination Mode of V-Shaped Thienylpyridyl Ligand in Three MOFs. Inorganic Chemistry, 2017, 56, 2936-2940.	4.0	69
32	Three New Coordination Polymers Based on One Reduced Symmetry Tripodal Linker. Crystal Growth and Design, 2011, 11, 3115-3121.	3.0	67
33	The rational synthesis of (10,3)-type MOFs based on tetranuclear [W(Mo)OS3Cu3]+ secondary building units. Chemical Communications, 2011, 47, 10049.	4.1	67
34	Metal–Organic Frameworks Based on Flexible V-Shaped Polycarboxylate Acids: Hydrogen Bondings, Non-Interpenetrated and Polycatenated. Crystal Growth and Design, 2012, 12, 4072-4082.	3.0	67
35	Syntheses, structures, photoluminescence and magnetic properties of five compounds with 1,3,5-benzenetricarboxylate acid and imidazole ligands. CrystEngComm, 2010, 12, 612-619.	2.6	60
36	Two stable 3D porous metal-organic frameworks with high selectivity for detection of PA and metal ions. Dyes and Pigments, 2017, 136, 515-521.	3.7	59

#	Article	IF	CITATIONS
37	Crystal Structures and Spectroscopic Properties of Metal–Organic Frameworks Based on Rigid Ligands with Flexible Functional Groups. Crystal Growth and Design, 2014, 14, 491-499.	3.0	58
38	One non-interpenetrated chiral porous multifunctional metal–organic framework and its applications for sensing small solvent molecules and adsorption. Chemical Communications, 2015, 51, 2447-2449.	4.1	58
39	Metal–Organic Frameworks Constructed from Versatile [WS ₄ Cu _{<i>x</i>}] ^{<i>x</i>â°2} Units: Micropores in Highly Interpenetrated Systems. Chemistry - A European Journal, 2012, 18, 2812-2824.	3.3	57
40	Diverse Structures of Metal–Organic Frameworks Based on a New Star-Like Tri(4-pyridylphenyl)amine Ligand. Crystal Growth and Design, 2012, 12, 3957-3963.	3.0	54
41	Syntheses, Characterization, and Luminescence Properties of Four Metal–Organic Frameworks Based on a Linear-Shaped Rigid Pyridine Ligand. Crystal Growth and Design, 2016, 16, 2496-2503.	3.0	54
42	A Water-Stable Tb-MOF As a Rapid, Accurate, and Highly Sensitive Ratiometric Luminescent Sensor for the Discriminative Sensing of Antibiotics and D ₂ O in H ₂ O. Inorganic Chemistry, 2021, 60, 10513-10521.	4.0	54
43	Three Zn(ii)-based MOFs for luminescence sensing of Fe3+ and Cr2O72â^' ions. Dalton Transactions, 2018, 47, 3298-3302.	3.3	51
44	A second-order nonlinear optical material with a hydrated homochiral helix obtained via spontaneous symmetric breaking crystallization from an achiral ligand. Chemical Communications, 2013, 49, 3585.	4.1	50
45	Zn(II)/Cd(II) Terephthalate Coordination Polymers Incorporating Bi-, Tri-, and Tetratopic Phenylamine Derivatives: Crystal Structures and Photoluminescent Properties. Crystal Growth and Design, 2016, 16, 2747-2755.	3.0	50
46	Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen Black as boosted bifunctional oxygen catalysts for Zn–air batteries. Chemical Engineering Journal, 2022, 427, 131614.	12.7	50
47	Syntheses, structures, photoluminescence and magnetic properties of four new metal–organic frameworks based on imidazoleligands and aromatic polycarboxylate acids. CrystEngComm, 2011, 13, 857-865.	2.6	48
48	Solvothermal synthesis, structures and physical properties of four new complexes constructed from multi-variant tricarboxylate ligand and pyridyl-based ligands. CrystEngComm, 2011, 13, 459-466.	2.6	47
49	Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting. Journal of Power Sources, 2020, 480, 228866.	7.8	46
50	Four New Luminescent Metal–Organic Frameworks as Multifunctional Sensors for Detecting Fe ³⁺ , Cr ₂ O ₇ ^{2–} and Nitromethane. Crystal Growth and Design, 2020, 20, 1898-1904.	3.0	45
51	A triphenylamine-functionalized luminescent sensor for efficient <i>p</i> -nitroaniline detection. Dalton Transactions, 2018, 47, 7222-7228.	3.3	44
52	Fluorescence recognition of adenosine triphosphate and uric acid by two Eu-based metal–organic frameworks. Journal of Materials Chemistry C, 2021, 9, 6051-6061.	5.5	44
53	Cd-Based metal–organic frameworks from solvothermal reactions involving in situ aldimine condensation and the highly sensitive detection of Fe ³⁺ ions. Dalton Transactions, 2017, 46, 2332-2338.	3.3	43
54	Structure–property relationship of homochiral and achiral supramolecular isomers obtained by one-pot synthesis. Chemical Communications, 2012, 48, 10757.	4.1	42

#	Article	IF	CITATIONS
55	Two MOFs as dual-responsive photoluminescence sensors for metal and inorganic ion detection. Dalton Transactions, 2018, 47, 8257-8263.	3.3	41
56	A new five-coordinated copper compound for efficient degradation of methyl orange and Congo red in the absence of UV–visible radiation. Dalton Transactions, 2016, 45, 18566-18571.	3.3	40
57	Five Novel Coordination Polymers Based on a C-Centered Triangular Flexible Ligand. Crystal Growth and Design, 2012, 12, 1022-1031.	3.0	38
58	Interpenetrated Metal–Organic Framework with Selective Gas Adsorption and Luminescent Properties. Crystal Growth and Design, 2014, 14, 2742-2746.	3.0	36
59	Syntheses, structures, magnetic and photoluminescence properties of metal–organic frameworks based on aromatic polycarboxylate acids. CrystEngComm, 2011, 13, 1617-1624.	2.6	35
60	Effects of structural optimization on the performance of dye-sensitized solar cells: spirobifluorene as a promising building block to enhance V _{oc} . Journal of Materials Chemistry A, 2016, 4, 11782-11788.	10.3	35
61	Critical factors influencing the structures and properties of metal–organic frameworks. CrystEngComm, 2015, 17, 981-991.	2.6	34
62	Three Anionic Indium–Organic Frameworks for Highly Efficient and Selective Dye Adsorption, Lanthanide Adsorption, and Luminescence Regulation. Inorganic Chemistry, 2019, 58, 8396-8407.	4.0	34
63	Controlled Synthesis of Three-Fold Dendrites of Ce(OH)CO ₃ with Multilayer Caltrop and Their Thermal Conversion to CeO ₂ . Crystal Growth and Design, 2012, 12, 271-280.	3.0	31
64	Chiral 3D/3D hetero-interpenetrating framework with six kinds of helices, 3D polyrotaxane and 2D network via one-pot reaction. CrystEngComm, 2013, 15, 227-230.	2.6	31
65	Syntheses, Characterizations, Luminescent Properties, and Controlling Interpenetration of Five Metal–Organic Frameworks Based on Bis(4-(pyridine-4-yl)phenyl)amine. Crystal Growth and Design, 2015, 15, 1303-1310.	3.0	31
66	Three 2D/2D → 2D or 3D Coordination Polymers: Parallel Stacked, Interpenetration, and Polycatenated. Crystal Growth and Design, 2013, 13, 5045-5049.	3.0	30
67	Picolinic acid as an efficient tridentate anchoring group adsorbing at Lewis acid sites and BrĄ̃nsted acid sites of the TiO ₂ surface in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14809-14816.	10.3	30
68	Five New Transition Metal Coordination Polymers Based on V-Shaped Bis-triazole Ligand with Aromatic Dicarboxylates: Syntheses, Structures, and Properties. Crystal Growth and Design, 2017, 17, 2757-2766.	3.0	29
69	Tuning Structural Topologies of a Series of Metal–Organic Frameworks: Different Bent Dicarboxylates. Crystal Growth and Design, 2013, 13, 2111-2117.	3.0	28
70	Effects of heterocycles containing different atoms as π-bridges on the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 16334-16340.	2.8	28
71	Assembly of various degrees of interpenetration of Co-MOFs based on mononuclear or dinuclear cluster units: magnetic properties and gas adsorption. Dalton Transactions, 2015, 44, 4751-4758.	3.3	28
72	Syntheses, Structures, Photochemical and Magnetic Properties of Novel Divalent Cd/Mn Coordination Polymers Based on a Semirigid Tripodal Carboxylate Ligand. Crystal Growth and Design, 2013, 13, 1694-1702.	3.0	26

#	Article	IF	CITATIONS
73	The impact of adjusting auxiliary donors on the performance of dye-sensitized solar cells based on phenothiazine D-D-ï€-A sensitizers. Dyes and Pigments, 2017, 146, 127-135.	3.7	26
74	Two pairs of isomorphism and two 3D metal–organic frameworks based on a star-like ligand tri(4-pyridylphenyl)amine. CrystEngComm, 2014, 16, 698-706.	2.6	25
75	Construction of Metal–Organic Frameworks Based on Two Neutral Tetradentate Ligands. Crystal Growth and Design, 2012, 12, 4911-4918.	3.0	24
76	Synthesis and properties of five unexpected copper complexes with ring-cleavage of 3,6-di-2-pyridyl-1,2,4,5–tetrazine by one pot in situ hydrothermal reaction. CrystEngComm, 2012, 14, 2258.	2.6	24
77	Enhanced performance of dye-sensitized solar cells with Y-shaped organic dyes containing di-anchoring groups. New Journal of Chemistry, 2016, 40, 2799-2805.	2.8	24
78	A second-order nonlinear optical material with a 5-fold interpenetrating diamondoid framework based on two achiral precursors: spontaneous resolution to absolute chiral induction. Dalton Transactions, 2017, 46, 4589-4594.	3.3	24
79	Syntheses, crystal structures, dye degradation and luminescence sensing properties of four coordination polymers. CrystEngComm, 2020, 22, 2327-2335.	2.6	24
80	Structural Diversity and Properties of Six 2D or 3D Metal–Organic Frameworks Based on Thiophene-Containing Ligand. Crystal Growth and Design, 2012, 12, 5783-5791.	3.0	23
81	Syntheses, characterizations and properties of five new metal–organic complexes based on flexible ligand 4,4′-(phenylazanediyl)dibenzoic acid. CrystEngComm, 2013, 15, 616-627.	2.6	23
82	Syntheses, crystal structures and non-linear optical properties of two novel windmill-shaped clusters: [M2Pd4S8(dppm)2]·4DMF (Mâ€=â€W or Mo). Dalton Transactions RSC, 2000, , 2145-2149.	2.3	22
83	A rare three-coordinated zinc cluster–organic framework with two types of secondary building units. Chemical Communications, 2015, 51, 2899-2902.	4.1	22
84	Diverse structures of metal–organic frameworks based on different metal ions: luminescence and gas adsorption properties. Dalton Transactions, 2015, 44, 4238-4245.	3.3	22
85	Structures and applications of metal–organic frameworks featuring metal clusters. CrystEngComm, 2017, 19, 745-757.	2.6	22
86	An excellent example illustrating the fluorescence sensing property of cobalt–organic frameworks. Dalton Transactions, 2019, 48, 2285-2289.	3.3	22
87	Syntheses, structures, and photoluminescent properties of a series of metal–organic frameworks constructed by 5,5′-bis(1H-imidazol-1-yl)-2,2′-bithiophene and various carboxylate ligands. CrystEngComm, 2014, 16, 900-909.	2.6	21
88	Syntheses, structures, and properties of six cobalt(<scp>ii</scp>) complexes based on a tripodal tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine ligand. Dalton Transactions, 2015, 44, 16854-16864.	3.3	21
89	Organic electroluminescent derivatives containing dibenzothiophene and diarylamine segments. Journal of Materials Chemistry, 2005, 15, 3233.	6.7	20
90	Unusual three-dimensional coordination networks with [WS ₄ Cu ₆] cluster nodes and α-C ₃ N ₄ topology. CrystEngComm, 2009, 11, 605-609.	2.6	19

#	Article	IF	CITATIONS
91	Organic–inorganic hybrid coordination polymers based on the 5-oxyacetate isophthalic acid (H3OABDC) ligand: syntheses, structures, magnetic and luminescent properties. CrystEngComm, 2010, 12, 4424.	2.6	19
92	Three different metal–organic frameworks derived from a one-pot crystallization and their controllable synthesis. Chemical Communications, 2015, 51, 8338-8341.	4.1	18
93	Six isostructural lanthanide-containing MOFs built on a semi-rigid tripodal organic ligand. Inorganic Chemistry Communication, 2017, 78, 1-4.	3.9	18
94	A bifunctional photoluminescent metalâ ``organic framework for detection of Fe3+ ion and nitroaromatics. Inorganic Chemistry Communication, 2018, 89, 68-72.	3.9	18
95	Three metal–organic framework isomers of different pore sizes for selective CO ₂ adsorption and isomerization studies. Dalton Transactions, 2020, 49, 5618-5624.	3.3	18
96	Four new metal–organic frameworks based on a rigid linear ligand: synthesis, optical properties and structural investigation. CrystEngComm, 2014, 16, 5662-5671.	2.6	17
97	Promising alkoxy-wrapped porphyrins with novel push–pull moieties for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14883-14889.	10.3	17
98	Energetic MOF-derived cobalt/iron nitrides embedded into N, S-codoped carbon nanotubes as superior bifunctional oxygen catalysts for Zn–air batteries. Applied Surface Science, 2021, 569, 151030.	6.1	17
99	Cyclopentaneteracarboxylic Metal–Organic Frameworks: Tuning the Distance between Layers and Pore Structures with N-Ligands. Inorganic Chemistry, 2016, 55, 4951-4957.	4.0	16
100	Insight into the effects of modifying π-bridges on the performance of dye-sensitized solar cells containing triphenylamine dyes. Physical Chemistry Chemical Physics, 2016, 18, 29555-29560.	2.8	16
101	Syntheses, characterization, and properties of five coordination compounds based on the ligand tetrakis(4-pyridyloxymethylene)methane. CrystEngComm, 2014, 16, 3917-3925.	2.6	15
102	Syntheses, Structures, and Properties of Four Metal–Organic Frameworks Based on a N-Centered Multidentate Pyridine-Carboxylate Bifunctional Ligand. Crystal Growth and Design, 2016, 16, 4711-4719.	3.0	15
103	The synthesis, structure and third-order nonlinear optical effect of a new 2D cluster polymer based on a [WS4Cu4]2+ SBU and 1,2-di(pyridin-4-yl)ethane. CrystEngComm, 2013, 15, 7354.	2.6	14
104	Anion-selectivity of cationic cluster–organic nanospheres based on a nest-shaped [MS4Cu3X3] clustermonomer with a ditopic ligand. CrystEngComm, 2013, 15, 5016.	2.6	14
105	MOF-derived CoNi,CoO,NiO@N–C bifunctional oxygen electrocatalysts for liquid and all-solid-state Zn–air batteries. Nanoscale, 2021, 13, 17655-17662.	5.6	14
106	Synthesis, Structural Characterization of a Novel 4,4′â€Bipyridyl Based HgI2Adduct. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2003, 33, 1-10.	1.8	13
107	Molecular Tectonics of Four-Connected Network Topologies by Regulating the Ratios of Tetrahedral and Square-Planar Building Units. Crystal Growth and Design, 2014, 14, 6607-6612.	3.0	13
108	Two new Zn(II)/Cu(II) complexes based on bi- and tritopic 1,2,4-triazole derivatives with glutaric acid: Syntheses, structures, luminescent and magnetic properties. Inorganic Chemistry Communication, 2017, 79, 21-24.	3.9	13

#	Article	IF	CITATIONS
109	Synthesis, crystal structure and non-linear optical properties of the heterobimetallic polymeric compound {[n-Bu4N][W2Ag3S8]}n. CrystEngComm, 2003, 5, 62-64.	2.6	12
110	Construction of a series of metal–organic frameworks with a neutral tetradentate ligand and rigid carboxylate co-ligands. CrystEngComm, 2012, 14, 8274.	2.6	12
111	Application of W–Cu–S-based secondary building units in functional metal–organic frameworks. CrystEngComm, 2013, 15, 9265.	2.6	12
112	Improvement of photovoltaic performance of DSSCs by modifying panchromatic zinc porphyrin dyes with heterocyclic units. Journal of Materials Chemistry A, 2014, 2, 20841-20848.	10.3	12
113	Improvement of dye-sensitized solar cells performance through introducing different heterocyclic groups to triarylamine dyes. RSC Advances, 2015, 5, 3720-3727.	3.6	12
114	A pair of 3D enantiotopic zinc(ii) complexes based on two asymmetric achiral ligands. Dalton Transactions, 2017, 46, 14779-14784.	3.3	12
115	Stable Cd Metal–Organic Framework as a Multiresponsive Luminescent Biosensor for Rapid, Accurate, and Recyclable Detection of Hippuric Acid, Nucleoside Phosphates, and Fe ³⁺ in Urine and Serum. Inorganic Chemistry, 2022, 61, 11243-11251.	4.0	12
116	Two new luminescent Cd(II)/Zn(II) metal–organic frameworks for exceptionally selective detection of picric acid explosives. Inorganic Chemistry Communication, 2016, 66, 51-54.	3.9	11
117	Crystal Structure and Excited Optical Nonlinearity of a 1D Polymeric [W2O2S6Cu4(NCMe)4]n Cluster. European Journal of Inorganic Chemistry, 2004, 2004, 2754-2758.	2.0	10
118	Eight new complexes based on flexible multicarboxylate ligands: synthesis, structures and properties. CrystEngComm, 2010, 12, 3183.	2.6	10
119	Improving the Stability and Visualizing the Structural Transformation of the Stimuli-Responsive Metal–Organic Frameworks (MOFs). Inorganic Chemistry, 2020, 59, 5093-5098.	4.0	10
120	Energetic MOF-derived hollow carbon tubes with interconnected channels and encapsulated nickel-cobalt alloy sites as bifunctional catalysts for Zn–air batteries with stable cycling over 600 cycles. Applied Surface Science, 2022, 591, 153070.	6.1	10
121	Synthesis, crystal structure and nonlinear optical properties of a cluster compound containing the bipy ligand. Transition Metal Chemistry, 2004, 29, 185-188.	1.4	9
122	Syntheses, characterization, and magnetic properties of novel divalent Co/Ni coordination polymers based on a V-shaped pyridine ligand and dicarboxylate acids. RSC Advances, 2015, 5, 64514-64519.	3.6	9
123	Diverse structures of metal–organic frameworks via a side chain adjustment: interpenetration and gas adsorption. Dalton Transactions, 2016, 45, 16205-16210.	3.3	9
124	Mixed matrix membranes containing fluorescent coordination polymers for detecting Cr ₂ O ₇ ^{2â^'} with high sensitivity, stability and recyclability. Dalton Transactions, 2021, 50, 7944-7948.	3.3	9
125	The difference in the CO ₂ adsorption capacities of different functionalized pillar-layered metal–organic frameworks (MOFs). Dalton Transactions, 2021, 50, 9310-9316.	3.3	9
126	Dicarboxylate-dependent structural diversity in amino-functionalized complexes: From mononuclear to multinuclear coordination polymer. Inorganic Chemistry Communication, 2016, 69, 4-6.	3.9	8

#	Article	IF	CITATIONS
127	A novel and efficient method of MOF-derived electrocatalyst for HER performance through doping organic ligands. Materials Chemistry Frontiers, 2021, 5, 7833-7842.	5.9	8
128	Porous and single crystalline Co3O4 nanospheres for pseudocapacitors with enhanced performance. RSC Advances, 2015, 5, 27266-27272.	3.6	7
129	Reactions of singlet phosphinidene and its hydroxy derivative with polar molecule hydrogen fluoride. Molecular Physics, 2006, 104, 599-605.	1.7	6
130	Four coordination polymers derived from a one-pot reaction and their controlled synthesis. Dalton Transactions, 2016, 45, 6418-6423.	3.3	6
131	Two bifunctional photoluminescent Zn (II) coordination polymers for detection of Fe3+ ion and nitrobenzene. Inorganic Chemistry Communication, 2019, 107, 107479.	3.9	6
132	Construction of a novel Cd(II) coordination polymer based on a flexible tripodal carboxylic acid and bimid coligands. Inorganic Chemistry Communication, 2017, 79, 17-20.	3.9	5
133	The Mutation in the Singleâ€Crystal Structural Transformation Process, Induced by the Combined Stimuli of Temperature and Solvent. Chemistry - A European Journal, 2018, 24, 327-331.	3.3	5
134	Molecular engineering in a family of pillared-layered metal–organic frameworks for tuning gas adsorption behavior. Dalton Transactions, 2021, 50, 7409-7416.	3.3	5
135	Quinoxalines Incorporating Triarylamines: Dipolar Electroluminescent Materials with Tunable Emission Characteristics. Journal of the Chinese Chemical Society, 2006, 53, 233-242.	1.4	4
136	Response to the Temperature and Solvent Stimulation of MOF Material in a Single-Crystal to Single-Crystal Manner. Inorganic Chemistry, 2022, 61, 47-51.	4.0	4
137	Synthesis and Crystal Structures of Two Nest-Shaped Cluster Compounds, [MoOS ₃ Cu ₃ (SCN)py ₅] and [WOS ₃ Cu ₃ (SCN)py ₅]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2000, 30, 761-775.	1.8	3
138	Synthesis, Crystal Structure and Nonlinear Optical Properties of a new cluster compound: MoS4Cu3(PyPPh2)3Cl. Journal of Coordination Chemistry, 2003, 56, 595-601.	2.2	3
139	Structures and stabilities of the donor–acceptor complexes HXPY (X=Al, B; Y=H, F, OH). Molecular Physics, 2006, 104, 447-452.	1.7	3
140	Studies on the Thermodynamic and Kinetic Properties of Reactions of Bo(Bs) with H ₂ . Progress in Reaction Kinetics and Mechanism, 2006, 31, 1-9.	2.1	3
141	Theoretical study of the insertion reaction of singlet phosphinidene with hydrogen sulfide. Journal of Chemical Research, 2006, 2006, 303-305.	1.3	3
142	Title is missing!. Transition Metal Chemistry, 2003, 28, 137-141.	1.4	2
143	One rutile Co(II) coordinated polymer with bifunctional ligand. Inorganic Chemistry Communication, 2014, 46, 191-193.	3.9	2
144	One 2D anionic coordination polymer with {[Co(H2O)6]}2+ cationic guest for fast and selective adsorption of cationic dyes. Inorganic Chemistry Communication, 2017, 85, 89-91.	3.9	2

#	Article	IF	CITATIONS
145	Metal–organic frameworks constructed from an [MS4Cux]xâ^'2 (M = W, Mo) unit: isomerization of the cluster unit induced by temperature. CrystEngComm, 0, , .	2.6	0
146	From Hydrogen Bond to van der Waals Force: Molecular Scalpel Strategy to Exfoliate a Two-Dimensional Metal–Organic Nanosheet. Inorganic Chemistry, 2022, 61, 5465-5468.	4.0	0