Gary S Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1802792/publications.pdf Version: 2024-02-01

CADY S STEIN

#	Article	IF	CITATIONS
1	Canonical WNT Signaling Promotes Osteogenesis by Directly Stimulating Runx2 Gene Expression. Journal of Biological Chemistry, 2005, 280, 33132-33140.	3.4	984
2	Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004, 23, 4315-4329.	5.9	461
3	Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders, 2006, 7, 1-16.	5.7	397
4	Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 1-42.	0.9	392
5	The Runx2 Osteogenic Transcription Factor Regulates Matrix Metalloproteinase 9 in Bone Metastatic Cancer Cells and Controls Cell Invasion. Molecular and Cellular Biology, 2005, 25, 8581-8591.	2.3	280
6	Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 2000, 184, 341-350.	4.1	236
7	Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature, 2007, 445, 442-446.	27.8	218
8	Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBFα/AML/PEBP2α) dependent activation of tissue-specific gene transcription. Journal of Cell Science, 2000, 113, 2221-2231.	2.0	218
9	Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biology, 2015, 16, 214.	8.8	206
10	tsRNA signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8071-8076.	7.1	202
11	Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 1-41.	0.9	194
12	Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8048-8053.	7.1	189
13	BMP2 Commitment to the Osteogenic Lineage Involves Activation of Runx2 by DLX3 and a Homeodomain Transcriptional Network. Journal of Biological Chemistry, 2006, 281, 40515-40526.	3.4	188
14	Differential Regulation of the Two Principal Runx2/Cbfa1 N-Terminal Isoforms in Response to Bone Morphogenetic Protein-2 during Development of the Osteoblast Phenotype. Endocrinology, 2001, 142, 4026-4039.	2.8	182
15	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. Journal of Cellular Biochemistry, 2001, 80, 424-440.	2.6	177
16	Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1454-1459.	7.1	174
17	Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Research, 2003, 63, 2631-7.	0.9	165
18	Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Research, 2015, 75, 1433-1444.	0.9	164

#	Article	IF	CITATIONS
19	A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. Journal of Cell Science, 2001, 114, 3093-3102.	2.0	159
20	The core-binding factor \hat{I}^2 subunit is required for bone formation and hematopoietic maturation. Nature Genetics, 2002, 32, 645-649.	21.4	158
21	Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3189-3194.	7.1	152
22	HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes. Molecular and Cellular Biology, 2007, 27, 3337-3352.	2.3	148
23	Nuclear microenvironments in biological control and cancer. Nature Reviews Cancer, 2007, 7, 454-463.	28.4	144
24	Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2. Journal of Biological Chemistry, 2015, 290, 27604-27617.	3.4	144
25	Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. Journal of Cellular Physiology, 2005, 204, 63-72.	4.1	142
26	Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nature Reviews Genetics, 2010, 11, 583-589.	16.3	142
27	Fidelity of Runx2 Activity in Breast Cancer Cells Is Required for the Generation of Metastases-Associated Osteolytic Disease. Cancer Research, 2004, 64, 4506-4513.	0.9	133
28	Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biology, 2014, 15, R52.	9.6	122
29	Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends in Cell Biology, 2003, 13, 584-592.	7.9	121
30	Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation. , 1998, 72, 62-72.		112
31	MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death and Disease, 2018, 8, e2572-e2572.	6.3	110
32	The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics, 2017, 9, 919-931.	2.1	108
33	Tumor cells exhibit deregulation of the cell cycle histone gene promoter factor HiNF-D. Science, 1990, 247, 1454-1457.	12.6	107
34	The dynamic organization of geneâ€regulatory machinery in nuclear microenvironments. EMBO Reports, 2005, 6, 128-133.	4.5	107
35	A Runx2 threshold for the cleidocranial dysplasia phenotype. Human Molecular Genetics, 2008, 18, 556-568.	2.9	97
36	MicroRNA-34c Inversely Couples the Biological Functions of the Runt-related Transcription Factor RUNX2 and the Tumor Suppressor p53 in Osteosarcoma. Journal of Biological Chemistry, 2013, 288, 21307-21319.	3.4	95

#	Article	IF	CITATIONS
37	Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts*. Journal of Cellular Biochemistry, 2002, 85, 112-122.	2.6	93
38	Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Journal of Cellular Physiology, 2003, 196, 301-311.	4.1	93
39	Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone, 2015, 81, 746-756.	2.9	93
40	Transcriptional Induction of the Osteocalcin Gene During Osteoblast Differentiation Involves Acetylation of Histones H3 and H4. Molecular Endocrinology, 2003, 17, 743-756.	3.7	92
41	The abbreviated pluripotent cell cycle. Journal of Cellular Physiology, 2013, 228, 9-20.	4.1	92
42	SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Research, 2016, 26, 1188-1201.	5.5	90
43	Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget, 2016, 7, 5094-5109.	1.8	89
44	Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14852-14857.	7.1	88
45	Nkx3.2-mediated Repression of Runx2 Promotes Chondrogenic Differentiation. Journal of Biological Chemistry, 2005, 280, 15872-15879.	3.4	87
46	Metastatic bone disease: Role of transcription factors and future targets. Bone, 2011, 48, 30-36.	2.9	87
47	Phenotypic transcription factors epigenetically mediate cell growth control. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6632-6637.	7.1	86
48	Synergism between Wnt3a and Heparin Enhances Osteogenesis via a Phosphoinositide 3-Kinase/Akt/RUNX2 Pathway. Journal of Biological Chemistry, 2010, 285, 26233-26244.	3.4	86
49	Targeting of the YY1 transcription factor to the nucleolus and the nuclear matrix in situ: The C-terminus is a principal determinant for nuclear trafficking. , 1998, 68, 500-510.		83
50	Transcription factors RUNX1/AML1 and RUNX2/Cbfa1 dynamically associate with stationary subnuclear domains. Journal of Cell Science, 2002, 115, 4167-4176.	2.0	82
51	Ectopic Runx2 Expression in Mammary Epithelial Cells Disrupts Formation of Normal Acini Structure: Implications for Breast Cancer Progression. Cancer Research, 2009, 69, 6807-6814.	0.9	80
52	Epithelialâ€ŧoâ€mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. Journal of Cellular Physiology, 2018, 233, 9136-9144.	4.1	80
53	Enhancer of Zeste Homolog 2 Inhibition Stimulates Bone Formation and Mitigates Bone Loss Caused by Ovariectomy in Skeletally Mature Mice. Journal of Biological Chemistry, 2016, 291, 24594-24606.	3.4	78
54	Intranuclear trafficking of transcription factors: implications for biological control. Journal of Cell Science, 2000, 113, 2527-2533.	2.0	76

#	Article	IF	CITATIONS
55	Could IncRNAs be the Missing Links in Control of Mesenchymal Stem Cell Differentiation?. Journal of Cellular Physiology, 2015, 230, 526-534.	4.1	72
56	Co-stimulation of the Bone-related Runx2 P1 Promoter in Mesenchymal Cells by SP1 and ETS Transcription Factors at Polymorphic Purine-rich DNA Sequences (Y-repeats). Journal of Biological Chemistry, 2009, 284, 3125-3135.	3.4	70
57	Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone, 2011, 48, 1117-1126.	2.9	68
58	Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B. Journal of Biological Chemistry, 2015, 290, 28329-28342.	3.4	68
59	Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression. Journal of Cellular Biochemistry, 2017, 118, 351-360.	2.6	68
60	Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget, 2016, 7, 79032-79046.	1.8	68
61	Histone Acetylation in Vivo at the Osteocalcin Locus Is Functionally Linked to Vitamin D-dependent, Bone Tissue-specific Transcription. Journal of Biological Chemistry, 2002, 277, 20284-20292.	3.4	66
62	Runx1 is associated with breast cancer progression in MMTVâ€PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. Journal of Cellular Physiology, 2015, 230, 2522-2532.	4.1	63
63	MicroRNAs in the control of metastatic bone disease. Trends in Endocrinology and Metabolism, 2014, 25, 320-327.	7.1	60
64	RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1389-1397.	1.9	60
65	Human embryonic stem cells are preâ€mitotically committed to selfâ€renewal and acquire a lengthened G1 phase upon lineage programming. Journal of Cellular Physiology, 2010, 222, 103-110.	4.1	59
66	An architectural perspective of cell-cycle control at the G1/S phase cell-cycle transition. Journal of Cellular Physiology, 2006, 209, 706-710.	4.1	58
67	The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. Journal of Cellular Physiology, 2015, 230, 2683-2694.	4.1	58
68	Nonlinear partial differential equations and applications: Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15434-15439.	7.1	56
69	Runx2/Cbfa1 Functions: Diverse Regulation of Gene Transcription by Chromatin Remodeling and Co-Regulatory Protein Interactions. Connective Tissue Research, 2003, 44, 141-148.	2.3	56
70	Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Research, 2010, 12, R89.	5.0	56
71	Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. Journal of Cellular Physiology, 2013, 228, 1784-1792.	4.1	56
72	Activation of the bone-related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mechanisms of Development, 2002, 114, 167-170.	1.7	55

#	Article	IF	CITATIONS
73	Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 438-449.	1.9	55
74	Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Molecular and Cellular Biology, 2016, 36, 615-627.	2.3	53
75	Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget, 2017, 8, 17610-17627.	1.8	53
76	Transcriptional element H4-site II of cell cycle regulated human H4 histone genes is a multipartite protein/DNA interaction site for factors HiNF-D, HiNF-M, and HiNF-P: Involvement of phosphorylation. Journal of Cellular Biochemistry, 1991, 46, 174-189.	2.6	51
77	Runx2 Protein Expression Utilizes the Runx2 P1 Promoter to Establish Osteoprogenitor Cell Number for Normal Bone Formation. Journal of Biological Chemistry, 2011, 286, 30057-30070.	3.4	51
78	The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation. Oncotarget, 2016, 7, 38270-38281.	1.8	51
79	Câ€ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higherâ€Order Chromatin Organization. Journal of Cellular Physiology, 2016, 231, 31-35.	4.1	50
80	Wnt/β atenin Signaling Activates Expression of the Boneâ€Related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types. Journal of Cellular Biochemistry, 2017, 118, 3662-3674.	2.6	49
81	The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes. Journal of Cell Science, 2008, 121, 3981-3990.	2.0	48
82	Suppression of Breast Cancer Stem Cells and Tumor Growth by the RUNX1 Transcription Factor. Molecular Cancer Research, 2018, 16, 1952-1964.	3.4	48
83	RUNX1â€dependent mechanisms in biological control and dysregulation in cancer. Journal of Cellular Physiology, 2019, 234, 8597-8609.	4.1	48
84	ldentification of tRNAâ€derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. Journal of Cellular Physiology, 2020, 235, 5318-5327.	4.1	48
85	The Histone Deacetylase Inhibitor, Vorinostat, Reduces Tumor Growth at the Metastatic Bone Site and Associated Osteolysis, but Promotes Normal Bone Loss. Molecular Cancer Therapeutics, 2010, 9, 3210-3220.	4.1	47
86	hsa-mir-30c promotes the invasive phenotype of metastatic breast cancer cells by targeting NOV/CCN3. Cancer Cell International, 2014, 14, 73.	4.1	46
87	Histone Deacetylase Inhibition Destabilizes the Multiâ€Potent State of Uncommitted Adiposeâ€Derived Mesenchymal Stromal Cells. Journal of Cellular Physiology, 2015, 230, 52-62.	4.1	46
88	Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. Journal of Cellular Physiology, 2017, 232, 182-191.	4.1	45
89	Positive association between nuclear Runx2 and oestrogen-progesterone receptor gene expression characterises a biological subtype of breast cancer. European Journal of Cancer, 2009, 45, 2239-2248.	2.8	44
90	TRANSCRIPTIONAL CONTROL OF CELL CYCLE PROGRESSION: THE HISTONE GENE IS A PARADIGM FOR THE G1/S PHASE AND PROLIFERATION/DIFFERENTIATION TRANSITIONS. Cell Biology International, 1996, 20, 41-49.	3.0	43

#	Article	IF	CITATIONS
91	The cancerâ€related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. Journal of Cellular Physiology, 2019, 234, 13659-13679.	4.1	43
92	Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer. Molecular and Cellular Biology, 2017, 37, .	2.3	42
93	Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: Gene expression, matrix composition, and ultrastructural characterization of cellular linings. Journal of Cellular Biochemistry, 1995, 57, 557-573.	2.6	41
94	MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumor Biology, 2016, 37, 8825-8839.	1.8	41
95	Alterations in intranuclear localization of Runx2 affect biological activity. Journal of Cellular Physiology, 2006, 209, 935-942.	4.1	40
96	Intranuclear and higherâ€order chromatin organization of the major histone gene cluster in breast cancer. Journal of Cellular Physiology, 2018, 233, 1278-1290.	4.1	40
97	Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. Journal of Cellular Biochemistry, 2016, 117, 9-19.	2.6	39
98	Molecular characterization of Celtix-1, a bromodomain protein interacting with the transcription factor 2. Journal of Cellular Physiology, 2000, 185, 269-279.	4.1	38
99	Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages. Journal of Cellular Physiology, 2016, 231, 1090-1096.	4.1	38
100	WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma. Cancer Research, 2016, 76, 6107-6117.	0.9	38
101	Impact of cell swelling on proliferative signal transduction in the liver. Journal of Cellular Biochemistry, 2001, 83, 56-69.	2.6	37
102	Interaction of the 1α,25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling. Biochemical Journal, 2002, 363, 667-676.	3.7	37
103	C/EBPβ binds the P1 promoter of the Runx2 gene and upâ€regulates Runx2 transcription in osteoblastic cells. Journal of Cellular Physiology, 2011, 226, 3043-3052.	4.1	36
104	Definitive hematopoiesis requires Runx1 C-terminal-mediated subnuclear targeting and transactivation. Human Molecular Genetics, 2010, 19, 1048-1057.	2.9	35
105	Effect of caffeine on parameters of osteoblast growth and differentiation of a mineralized extracellular matrix in vitro. Journal of Bone and Mineral Research, 1991, 6, 1029-1036.	2.8	34
106	The role of Runx2 in facilitating autophagy in metastatic breast cancer cells. Journal of Cellular Physiology, 2018, 233, 559-571.	4.1	34
107	RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. Journal of Cellular Physiology, 2020, 235, 7261-7272.	4.1	34
108	Nuclear microenvironments support assembly and organization of the transcriptional regulatory machinery for cell proliferation and differentiation. Journal of Cellular Biochemistry, 2004, 91, 287-302.	2.6	33

#	Article	IF	CITATIONS
109	Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?. Cancer Research, 2014, 74, 420-425.	0.9	33
110	The histone gene activator HINFP is a nonredundant cyclin E/CDK2 effector during early embryonic cell cycles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12359-12364.	7.1	31
111	Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics, 2015, 16, 309.	2.8	30
112	Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget, 2017, 8, 112170-112183.	1.8	30
113	Pharmacological targeting of the mammalian clock reveals a novel analgesic for osteoarthritis-induced pain. Gene, 2018, 655, 1-12.	2.2	29
114	Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. Journal of Biomedical Materials Research - Part A, 2019, 107, 1303-1313.	4.0	29
115	The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter. Nucleic Acids Research, 2014, 42, 10360-10372.	14.5	28
116	Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene, 2014, 550, 1-9.	2.2	28
117	Intranuclear Trafficking: Organization and Assembly of Regulatory Machinery for Combinatorial Biological Control. Journal of Biological Chemistry, 2004, 279, 43363-43366.	3.4	27
118	Chromatin Remodeling by SWI/SNF Results in Nucleosome Mobilization to Preferential Positions in the Rat Osteocalcin Gene Promoter. Journal of Biological Chemistry, 2007, 282, 9445-9457.	3.4	27
119	Loss of RUNX1 is associated with aggressive lung adenocarcinomas. Journal of Cellular Physiology, 2018, 233, 3487-3497.	4.1	27
120	Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology, 2016, 157, 3278-3292.	2.8	26
121	Temporal and Spatial Parameters of Skeletal Gene Expression: Targeting RUNX Factors and their Coregulatory Proteins to Subnuclear Domains. Connective Tissue Research, 2003, 44, 149-153.	2.3	25
122	Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. Journal of Cellular Physiology, 2015, 230, 440-448.	4.1	25
123	Oncofetal Epigenetic Bivalency in Breast Cancer Cells: H3K4 and H3K27 Tri-Methylation as a Biomarker for Phenotypic Plasticity. Journal of Cellular Physiology, 2016, 231, 2474-2481.	4.1	25
124	Ethanol Extract of <i>Cissus quadrangularis</i> Enhances Osteoblast Differentiation and Mineralization of Murine Pre-Osteoblastic MC3T3-E1 Cells. Journal of Cellular Physiology, 2017, 232, 540-547.	4.1	25
125	Profiling of human epigenetic regulators using a semi-automated real-time qPCR platform validated by next generation sequencing. Gene, 2017, 609, 28-37.	2.2	25
126	Histone H4 Methyltransferase Suv420h2 Maintains Fidelity of Osteoblast Differentiation. Journal of Cellular Biochemistry, 2017, 118, 1262-1272.	2.6	25

#	Article	IF	CITATIONS
127	Cell cycle regulation of an exogenous human poly(ADP-ribose) polymerase cDNA introduced into murine cells. Journal of Cellular Physiology, 1990, 144, 345-353.	4.1	24
128	Multiple interactions of the transcription factor YY1 with human histone H4 gene regulatory elements. Journal of Cellular Biochemistry, 1999, 72, 507-516.	2.6	24
129	SWI/SNF-Independent Nuclease Hypersensitivity and an Increased Level of Histone Acetylation at the P1 Promoter Accompany Active Transcription of the Bone Master Gene Runx2. Biochemistry, 2009, 48, 7287-7295.	2.5	24
130	The connection between BRG1, CTCF and topoisomerases at TAD boundaries. Nucleus, 2017, 8, 150-155.	2.2	24
131	Leukemia-associated AML1/ETO (8;21) chromosomal translocation protein increases the cellular representation of PML bodies. Journal of Cellular Biochemistry, 2000, 79, 103-112.	2.6	22
132	Transcriptional Auto-Regulation of RUNX1 P1 Promoter. PLoS ONE, 2016, 11, e0149119.	2.5	22
133	Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. Journal of Cellular Biochemistry, 2000, 79, 84-92.	2.6	21
134	Organization of transcriptional regulatory machinery in nuclear microenvironments: Implications for biological control and cancer. Advances in Enzyme Regulation, 2007, 47, 242-250.	2.6	21
135	Subnuclear domain proteins in cancer cells support transcription factor RUNX2 functions in DNA damage response. Journal of Cell Science, 2015, 128, 728-40.	2.0	21
136	Transient RUNX1 Expression during Early Mesendodermal Differentiation ofÂhESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports, 2016, 7, 884-896.	4.8	21
137	Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation. Connective Tissue Research, 2018, 59, 35-41.	2.3	21
138	The epigenetic reader Brd4 is required for osteoblast differentiation. Journal of Cellular Physiology, 2020, 235, 5293-5304.	4.1	21
139	A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget, 2016, 7, 70462-70474.	1.8	21
140	Transcription-factor-mediated epigenetic control of cell fate and lineage commitmentThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB's 51st Annual Meeting– Epigenetics and Chromatin Dynamics, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 1-6.	2.0	20
141	Expression of the ectodomainâ€releasing protease ADAM17 is directly regulated by the osteosarcoma and boneâ€related transcription factor RUNX2. Journal of Cellular Biochemistry, 2018, 119, 8204-8219.	2.6	20
142	Molecular Approaches to the Characterization of Cell and Blood/Biomaterial Interactions. Journal of Cardiac Surgery, 1992, 7, 177-187.	0.7	19
143	Identifying Nuclear Matrixâ€Attached DNA Across the Genome. Journal of Cellular Physiology, 2017, 232, 1295-1305.	4.1	19
144	Mitotic Gene Bookmarking: An Epigenetic Program to Maintain Normal and Cancer Phenotypes. Molecular Cancer Research, 2018, 16, 1617-1624.	3.4	19

#	Article	IF	CITATIONS
145	Genetic and epigenetic regulation in nuclear microenvironments for biological control in cancer. Journal of Cellular Biochemistry, 2008, 104, 2016-2026.	2.6	18
146	Multiple levels of epigenetic control for bone biology and pathology. Bone, 2015, 81, 733-738.	2.9	18
147	The homeodomain transcription factor CDP/cut interacts with the cell cycle regulatory element of histone H4 genes packaged into nucleosomes. Molecular Biology Reports, 1999, 26, 185-194.	2.3	17
148	Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. Journal of Cellular Physiology, 2013, 228, 313-321.	4.1	17
149	Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis. Journal of Cellular Physiology, 2015, 230, 2533-2542.	4.1	16
150	Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene: X, 2020, 763, 100027.	2.3	16
151	Nuclear structure and function. , 1996, 62, 147-148.		15
152	The Ultrastructural Signature of Human Embryonic Stem Cells. Journal of Cellular Biochemistry, 2017, 118, 764-774.	2.6	15
153	Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1–Dependent Chromatin Remodeling. Endocrinology, 2018, 159, 2484-2494.	2.8	15
154	Mll OMPASS complexes mediate H3K4me3 enrichment and transcription of the osteoblast master gene Runx2/p57 in osteoblasts. Journal of Cellular Physiology, 2019, 234, 6244-6253.	4.1	15
155	The Thyroid Hormone Receptor-RUNX2 Axis: A Novel Tumor Suppressive Pathway in Breast Cancer. Hormones and Cancer, 2020, 11, 34-41.	4.9	15
156	Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth. Advances in Experimental Medicine and Biology, 2017, 962, 95-102.	1.6	14
157	Intranuclear organization of RUNX transcriptional regulatory machinery in biological control of skeletogenesis and cancer. Blood Cells, Molecules, and Diseases, 2003, 30, 170-176.	1.4	13
158	Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos. Developmental Biology, 2016, 419, 311-320.	2.0	13
159	Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark. Journal of Cellular Physiology, 2016, 231, 2007-2013.	4.1	13
160	Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/Sâ€phase transition. Journal of Cellular Physiology, 2018, 233, 6406-6413.	4.1	13
161	Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3â€E1 (subclone 4). Journal of Cellular Physiology, 2019, 234, 23082-23096.	4.1	13
162	Protein-DNA interactions at the H4-Site III upstream transcriptional element of a cell cycle regulated histone H4 gene: Differences in normal versus tumor cells. Journal of Cellular Biochemistry, 1992, 49, 93-110.	2.6	12

#	Article	IF	CITATIONS
163	Subnuclear distribution of the vitamin D receptor. Journal of Cellular Biochemistry, 1994, 54, 494-500.	2.6	11
164	Nuclear structure/gene expression interrelationships. , 1999, 181, 240-250.		11
165	The Histone Gene Cell Cycle Regulator HiNF-P Is a Unique Zinc Finger Transcription Factor with a Novel Conserved Auxiliary DNA-Binding Motif. Biochemistry, 2008, 47, 11415-11423.	2.5	11
166	The Dynamic Architectural and Epigenetic Nuclear Landscape: Developing the Genomic Almanac of Biology and Disease. Journal of Cellular Physiology, 2014, 229, 711-727.	4.1	11
167	Combination of Carmustine and Selenite Inhibits EGFR Mediated Growth Signaling in Androgen-Independent Prostate Cancer Cells. Journal of Cellular Biochemistry, 2017, 118, 4331-4340.	2.6	11
168	Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes and Cancer, 2019, 58, 484-499.	2.8	11
169	Ethyl acetate and nâ€butanol fraction of <i>Cissus quadrangularis</i> promotes the mineralization potential of murine preâ€osteoblast cell line MC3T3â€E1 (subâ€clone 4). Journal of Cellular Physiology, 2019, 234, 10300-10314.	4.1	11
170	Modified intranuclear organization of regulatory factors in human acute leukemias: Reversal after treatment. , 2000, 77, 30-43.		10
171	Bone tissue specific transcriptional control. Cancer, 2000, 88, 2899-2902.	4.1	10
172	Redefining the activity of a bone-specific transcription factor: Novel insights for understanding bone formation. Journal of Bone and Mineral Research, 2013, 28, 2060-2063.	2.8	10
173	Dissection of Individual Prostate Lobes in Mouse Models of Prostate Cancer to Obtain High Quality RNA. Journal of Cellular Physiology, 2017, 232, 14-18.	4.1	10
174	Genome-wide DNase hypersensitivity, and occupancy of RUNX2 and CTCF reveal a highly dynamic gene regulome during MC3T3 pre-osteoblast differentiation. PLoS ONE, 2017, 12, e0188056.	2.5	10
175	Nuclear organization mediates cancer-compromised genetic and epigenetic control. Advances in Biological Regulation, 2018, 69, 1-10.	2.3	10
176	Switches in histone modifications epigenetically control vitamin D3â€dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5328-5339.	4.1	10
177	Temporal and spatial parameters of skeletal gene expression: targeting RUNX factors and their coregulatory proteins to subnuclear domains. Connective Tissue Research, 2003, 44 Suppl 1, 149-53.	2.3	10
178	Transcriptional control within the three-dimensional context of nuclear architecture: Requirements for boundaries and direction. Journal of Cellular Biochemistry, 1999, 75, 24-31.	2.6	9
179	Combinatorial organization of the transcriptional regulatory machinery in biological control and cancer. Advances in Enzyme Regulation, 2005, 45, 136-154.	2.6	9
180	Nuclear microenvironments and cancer. Journal of Cellular Biochemistry, 2008, 104, 1949-1952.	2.6	9

#	Article	IF	CITATIONS
181	Functional coupling of transcription factor HiNF-P and histone H4 gene expression during pre- and post-natal mouse development. Gene, 2011, 483, 1-10.	2.2	9
182	Towards a more precise and individualized assessment of breast cancer risk. Aging, 2019, 11, 1305-1316.	3.1	9
183	Acidic fibroblast growth factor modulates gene expression in the rat thyroid in vivo. Journal of Cellular Biochemistry, 1992, 50, 392-399.	2.6	8
184	Nanoparticleâ€based targeted cancer strategies for nonâ€invasive prostate cancer intervention. Journal of Cellular Physiology, 2018, 233, 6408-6417.	4.1	8
185	Inhibition of the RUNX1-CBFÎ ² transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget, 2020, 11, 2512-2530.	1.8	8
186	Onset of Dna Synthesis and S Phase. , 2004, , 149-200.		7
187	Hinfp is a guardian of the somatic genome by repressing transposable elements. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
188	Bipartite structure of the proximal promoter of a human H4 histone gene. Journal of Cellular Biochemistry, 1995, 58, 372-379.	2.6	6
189	Nuclear microenvironments support physiological control of gene expression. Chromosome Research, 2003, 11, 527-536.	2.2	6
190	Mechanogenomic Control of DNA Exposure and Sequestration. American Journal of Pathology, 2005, 166, 959-962.	3.8	6
191	An architectural genetic and epigenetic perspective. Integrative Biology (United Kingdom), 2011, 3, 297-303.	1.3	6
192	The Architectural Organization of Human Stem Cell Cycle Regulatory Machinery. Current Pharmaceutical Design, 2012, 18, 1679-1685.	1.9	6
193	The role of cell adhesion in hematopoiesis and leukemogenesis. Journal of Cellular Physiology, 2019, 234, 19189-19198.	4.1	6
194	Realâ€ŧime detection of breast cancer at the cellular level. Journal of Cellular Physiology, 2019, 234, 5413-5419.	4.1	6
195	Ezh2â€dependent H3K27me3 modification dynamically regulates vitamin D3â€dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5404-5412.	4.1	6
196	Developmental Regulation of Thyrotropin Receptor Gene Expression in the Fetal and Neonatal Rat Thyroid: Relation to Thyroid Morphology and to Thyroid-Specific Gene Expression. Endocrinology, 2000, 141, 340-345.	2.8	6
197	Organization, Integration, and Assembly of Genetic and Epigenetic Regulatory Machinery in Nuclear Microenvironments. Annals of the New York Academy of Sciences, 2009, 1155, 4-14.	3.8	5
198	Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 2000, 184, 341-350.	4.1	5

#	Article	IF	CITATIONS
199	Cell Cycle Regulatory Cascades. , 2004, , 93-128.		4
200	Subnuclear Localization and Intranuclear Trafficking of Transcription Factors. Methods in Molecular Biology, 2010, 647, 77-93.	0.9	4
201	Hypoxiaâ€inducible factor 2α is a novel inhibitor of chondrocyte maturation. Journal of Cellular Physiology, 2021, 236, 6963-6973.	4.1	4
202	Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation. Journal of Cellular Biochemistry, 1998, 72, 62-72.	2.6	4
203	The Shared Core Resource as a Partner in Innovative Scientific Research: Illustration from an Academic Microscopy Imaging Center. Journal of Biomolecular Techniques, 2022, 33, 3fc1f5fe.2507f36c.	1.5	4
204	LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment. Scientific Reports, 2022, 12, 7770.	3.3	4
205	Unique Regulatory Mechanisms for the Human Embryonic Stem Cell Cycle. Journal of Cellular Physiology, 2017, 232, 1254-1257.	4.1	3
206	Precocious Phenotypic Transcriptionâ€Factor Expression During Early Development. Journal of Cellular Biochemistry, 2017, 118, 953-958.	2.6	3
207	Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. Journal of Cellular Biochemistry, 2000, 79, 84-92.	2.6	3
208	Bioactivity-Guided Isolation and Identification of Anti-adipogenic Constituents from the n-Butanol Fraction of Cissus quadrangularis. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 519-541.	0.9	3
209	Cell science and protein crystal growth research for the International Space Station. Journal of Cellular Biochemistry, 2000, 79, 662-671.	2.6	2
210	Stem cell biology and gene therapy. Journal of Cellular Biochemistry, 2002, 85, v-vi.	2.6	2
211	Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. Journal of Cellular Biochemistry, 2003, 88, 340-355.	2.6	2
212	p53 Tumor-Suppressor Genes. , 2004, , 635-666.		2
213	Cell Cycle and Growth Control: Current Clinical Applications. , 2004, , 667-703.		2
214	Chromatin Remodeling and Cancer. , 2004, , 265-295.		2
215	Gene expression in nuclear microenvironments for biological control and cancer. Cancer Biology and Therapy, 2007, 6, 1817-1821.	3.4	2
216	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts*. , 2001, 80, 424.		2

0

217Control of the Human Pluripotent Cell Cycle. , 2010, , 235-251.218Oncogenic epigenetic control. Aging, 2016, 8, 565-566.3.1219Regulation of Cell Growth, Differentiation, and Death during Metamorphosis. , 2004, , 369-395220Translational Control and the Cell Cycle. , 2004, , 397-448	2 2 1 1 1
218Oncogenic epigenetic control. Aging, 2016, 8, 565-566.3.1219Regulation of Cell Growth, Differentiation, and Death during Metamorphosis. , 2004, , 369-395220Translational Control and the Cell Cycle. , 2004, , 397-448	2 1 1 1
219Regulation of Cell Growth, Differentiation, and Death during Metamorphosis. , 2004, , 369-395.220Translational Control and the Cell Cycle. , 2004, , 397-448.	1 1 1
220 Translational Control and the Cell Cycle. , 2004, , 397-448.	1
	1
Apoptosis Signaling in Normal and Cancer Cells. , 2004, , 497-521.	
Misregulated Fate-Cancer. , 2004, , 705-771.	1
223 The Progression and Regulation of Mitotic Events. , 2004, , 201-235.	1
A Peer-Based Strategy to Overcome HPV Vaccination Inequities in Rural Communities: A Physical Distancing-Compliant Approach. Critical Reviews in Eukaryotic Gene Expression, 2021, 31, 61-69.	1
Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts*The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health Journal of Cellular Biochemistry. 2002. 85. 112.	1
Methylation, Methionine and Metaphors. , 2014, , 21-43.	1
CXCR4 Mediates Enhanced Cell Migration in CALM-AF10 Leukemia. Frontiers in Oncology, 2021, 11, 2.8 708915.	1
228 Cell Fates. , 2004, , 1-13.	0
Angiogenesis and Blood Supply. , 2004, , 333-367.	0
Telomere Structure and Function Provides Insights into the Generation of Genomic Instability and Carcinogenesis. , 2004, , 449-465.	0
231 Immortalization by Sv40 Large T Antigen. , 2004, , 467-495.	0
232 Mutagenesis, Mutations, and Dna Repair. , 2004, , 523-570.	0
233 Oncogenes. , 2004, , 571-606.	0

Role of the Retinoblastoma Family in Cell Cycle Progression and Growth Control. , 2004, , 607-634.

#	Article	IF	CITATIONS
235	Architectural Organization of the Regulatory Machinery for Transcription, Replication, and Repair: Dynamic Temporal-Spatial Parameters of Cell Cycle Control. , 2004, , 15-92.		0
236	Membrane Receptors and Signal Transduction Pathways in G1: Regulation of Liver Regeneration and T Cell Proliferation. , 2004, , 129-147.		0
237	Cell Cycle Inhibitory Proteins. , 2004, , 237-264.		0
238	Extracellular Matrix: Tissue-specific Regulator of Cell Proliferation. , 2004, , 297-332.		0
239	The CBFB-MYH11 butterfly effect in hematopoiesis. Blood, 2007, 109, 3131-3132.	1.4	0
240	Environmental, Genetic, and Viral Causes of Cancer. , 0, , 35-56.		0
241	A New Generation of Drugs in Cancer Treatment: Molecularly Targeted Therapies. , 0, , 193-221.		0
242	Cancer Detection and Biomarkers. , 0, , 143-154.		0
243	Understanding the Biology of Cancer. , 0, , 101-122.		0
244	Clinical Challenges for Treatment and a Cure. , 0, , 155-167.		0
245	Mutations and Cell Defenses. , 0, , 123-142.		0
246	The Development of Drugs: Current Concepts and Issues. , 0, , 183-192.		0
247	What Goes Wrong in Cancer. , 0, , 1-19.		0
248	Clinical Trials in Oncology. , 0, , 169-181.		0
249	Consumer Health Information. , 0, , 257-265.		0
250	Diagnosis and Treatment of Malignant Diseases. , 0, , 57-81.		0
251	Clinical Challenges for Treatment and a Cure. , 0, , 83-99.		0
252	Synergistic regulation of the Runx2 P1 promoter in mesenchymal cells by a conserved HLH box and purineâ€rich elements (GAY motifs). FASEB Journal, 2008, 22, 782.17.	0.5	0

#	Article	IF	CITATIONS
253	Determining Pluripotency of Human Embryonic Stem Cells: Embryoid Body Formation. , 0, , 191-197.		0
254	Harvesting Human Embryonic Stem Cells for Cryopreservation. , 0, , 119-127.		0
255	Preparation of Mouse Embryonic Fibroblasts for Culture of Human Embryonic Stem Cells. , 0, , 59-85.		0
256	Sheldon Penman (1930–2021). Cell, 2022, 185, 1105-1106.	28.9	0