
Marvin E Tanenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1802551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition. ELife, 2022, 11, .	6.0	20
2	Illuminating RNA trafficking and functional delivery by extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 174, 250-264.	13.7	29
3	A public–private partnership model for COVID-19 diagnostics. Nature Biotechnology, 2021, 39, 1182-1184.	17.5	4
4	High-content imaging-based pooled CRISPR screens in mammalian cells. Journal of Cell Biology, 2021, 220, .	5.2	53
5	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	9.7	22
6	mRNA structural dynamics shape Argonaute-target interactions. Nature Structural and Molecular Biology, 2020, 27, 790-801.	8.2	32
7	Translation and Replication Dynamics of Single RNA Viruses. Cell, 2020, 183, 1930-1945.e23.	28.9	47
8	Heterogeneity in mRNA Translation. Trends in Cell Biology, 2020, 30, 606-618.	7.9	54
9	Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science, 2020, 367, 1151-1156.	12.6	92
10	Quantification of mRNA translation in live cells using single-molecule imaging. Nature Protocols, 2020, 15, 1371-1398.	12.0	11
11	Live imaging of mRNA using RNA-stabilized fluorogenic proteins. Nature Methods, 2019, 16, 862-865.	19.0	71
12	Single-Molecule Imaging Uncovers Rules Governing Nonsense-Mediated mRNA Decay. Molecular Cell, 2019, 75, 324-339.e11.	9.7	116
13	Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding. Cell, 2019, 178, 458-472.e19.	28.9	120
14	Imaging Translation Dynamics of Single mRNA Molecules in Live Cells. Methods in Molecular Biology, 2018, 1649, 385-404.	0.9	8
15	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	9.7	197
16	Heterogeneity in kinesin function. Traffic, 2017, 18, 658-671.	2.7	13
17	Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation. Chromosoma, 2017, 126, 473-486.	2.2	30
18	Dynamics of Translation of Single mRNA Molecules InÂVivo. Cell, 2016, 165, 976-989.	28.9	397

MARVIN E TANENBAUM

#	Article	IF	CITATIONS
19	Genome-wide RNAi screen for synthetic lethal interactions with the C. elegans kinesin-5 homolog BMK-1. Scientific Data, 2015, 2, 150020.	5.3	11
20	The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions. PLoS Pathogens, 2015, 11, e1005288.	4.7	127
21	Regulation of mRNA translation during mitosis. ELife, 2015, 4, .	6.0	138
22	Balanced Activity of Three Mitotic Motors Is Required for Bipolar Spindle Assembly and Chromosome Segregation. Cell Reports, 2014, 8, 948-956.	6.4	78
23	A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging. Cell, 2014, 159, 635-646.	28.9	1,245
24	Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science, 2014, 345, 337-341.	12.6	509
25	Systematic dissection of dynein regulators in mitosis. Journal of Cell Biology, 2013, 201, 201-215.	5.2	118
26	Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains. ELife, 2013, 2, e00943.	6.0	69
27	Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO Journal, 2012, 31, 4179-4190.	7.8	96
28	A Complex of Kif18b and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases. Current Biology, 2011, 21, 1356-1365.	3.9	121
29	Localized Aurora B activity spatially controls non-kinetochore microtubules during spindle assembly. Chromosoma, 2011, 120, 599-607.	2.2	13
30	Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture, 2011, 1, 80-87.	1.5	34
31	Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. Journal of Cell Biology, 2011, 194, 567-579.	5.2	159
32	Bi-directional transport of the nucleus by dynein and kinesin-1. Communicative and Integrative Biology, 2011, 4, 21-5.	1.4	7
33	Cyclin G-associated kinase promotes microtubule outgrowth from chromosomes during spindle assembly. Chromosoma, 2010, 119, 415-424.	2.2	26
34	Dynein at the nuclear envelope. EMBO Reports, 2010, 11, 649-649.	4.5	17
35	Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry. PLoS Biology, 2010, 8, e1000350.	5.6	268
36	Mechanisms of Centrosome Separation and Bipolar Spindle Assembly. Developmental Cell, 2010, 19, 797-806.	7.0	195

#	Article	IF	CITATIONS
37	RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. Journal of Cell Science, 2009, 122, 2436-2445.	2.0	96
38	Kif15 Cooperates with Eg5 to Promote Bipolar Spindle Assembly. Current Biology, 2009, 19, 1703-1711.	3.9	250
39	Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO Journal, 2008, 27, 3235-3245.	7.8	144
40	Cell fate in the Hand of Plk4. Nature Cell Biology, 2007, 9, 1127-1129.	10.3	7
41	CLIP-170 facilitates the formation of kinetochore–microtubule attachments. EMBO Journal, 2006, 25, 45-57.	7.8	72
42	The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes and Development, 2005, 19, 2501-2515.	5.9	101