Paul W O'toole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180248/publications.pdf

Version: 2024-02-01

276 papers

36,576 citations

4658 85 h-index 180

288 all docs

288 docs citations

times ranked

288

35277 citing authors

g-index

#	Article	IF	CITATIONS
1	Geographical and Seasonal Analysis of the Honeybee Microbiome. Microbial Ecology, 2023, 85, 765-778.	2.8	8
2	Altered Skin and Gut Microbiome in Hidradenitis Suppurativa. Journal of Investigative Dermatology, 2022, 142, 459-468.e15.	0.7	35
3	Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annual Review of Food Science and Technology, 2022, 13, 361-384.	9.9	21
4	Higher levels of bacterial DNA in serum associate with severe and fatal COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1312-1314.	5.7	11
5	Altered stress responses in adults born by Caesarean section. Neurobiology of Stress, 2022, 16, 100425.	4.0	10
6	Identification of Gut Bacteria such as Lactobacillus johnsonii that Disseminate to Systemic Tissues of Wild Type and MyD88â \in "/â \in " Mice. Gut Microbes, 2022, 14, 2007743.	9.8	1
7	Metabolic rewiring and serotonin depletion in patients with postacute sequelae of COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1623-1625.	5.7	11
8	Colorectal microbiota after removal of colorectal cancer. NAR Cancer, 2022, 4, zcac011.	3.1	5
9	Fermented Foods, Health and the Gut Microbiome. Nutrients, 2022, 14, 1527.	4.1	75
10	Role of the Microbiome in Regulating Bone Metabolism and Susceptibility to Osteoporosis. Calcified Tissue International, 2022, 110, 273-284.	3.1	22
11	The gut microbiome as a modulator of healthy ageing. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 565-584.	17.8	162
12	A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2. Gut Microbes, 2022, 14, 2073131.	9.8	40
13	Loss of MMR and TGFBR2 Increases the Susceptibility to Microbiota-Dependent Inflammation-Associated Colon Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 693-717.	4.5	6
14	Microbiome Transfer Partly Overrides Lack of ILâ€1RI Signaling to Alter Hepatic but not Adipose Tissue Phenotype and Lipid Handling following a Highâ€Fat Diet Challenge. Molecular Nutrition and Food Research, 2021, 65, e2000202.	3.3	4
15	Transplanting Microbes for Irritable Bowels or Irritated Microbes or Both?. Gastroenterology, 2021, 160, 15-17.	1.3	1
16	The Healthy Microbiomeâ€"What Is the Definition of a Healthy Gut Microbiome?. Gastroenterology, 2021, 160, 483-494.	1.3	174
17	Understanding the impact of age-related changes in the gut microbiome on chronic diseases and the prospect of elderly-specific dietary interventions. Current Opinion in Biotechnology, 2021, 70, 48-55.	6.6	22
18	A synthetic consortium of 100 gut commensals modulates the composition and function in a colon model of the microbiome of elderly subjects. Gut Microbes, 2021, 13, 1-19.	9.8	8

#	Article	IF	Citations
19	The gut virome in Irritable Bowel Syndrome differs from that of controls. Gut Microbes, 2021, 13, 1-15.	9.8	36
20	Macrophage cytokine responses to commensal Gram-positive Lactobacillus salivarius strains are TLR2-independent and Myd88-dependent. Scientific Reports, 2021, 11, 5896.	3.3	12
21	The Influence of Different Physical Activity Behaviours on the Gut Microbiota of Older Irish Adults. Journal of Nutrition, Health and Aging, 2021, 25, 854-861.	3.3	9
22	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	4.1	225
23	Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome. Frontiers in Microbiology, 2021, 12, 662159.	3.5	22
24	The potential of non-starter lactic acid bacteria from Cheddar cheese to colonise the gut. Journal of Functional Foods, 2021, 83, 104425.	3.4	10
25	Seasonality and Geography Have a Greater Influence than the Use of Chlorine-Based Cleaning Agents on the Microbiota of Bulk Tank Raw Milk. Applied and Environmental Microbiology, 2021, 87, e0108121.	3.1	8
26	244 MICROBIOME ANALYSIS OF UPPER DIGESTIVE TRACT BIOPSY SAMPLES FROM INDIVIDUALS ALONG THE METAPLASIA-DYSPLASIA-ADENOCARCINOMA SEQUENCE Ecological Management and Restoration, 2021, 34, .	0.4	0
27	Elevated gut microbiome abundance of <i>Christensenellaceae, Porphyromonadaceae and Rikenellaceae</i> is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes, 2021, 13, 1-19.	9.8	127
28	Mapping the colorectal tumor microbiota. Gut Microbes, 2021, 13, 1-10.	9.8	10
29	Vitamin K status and inflammation are associated with cognition in older Irish adults. Nutritional Neuroscience, 2020, 23, 591-599.	3.1	30
30	Differences in Fecal Microbiomes and Metabolomes of People With vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology, 2020, 158, 1016-1028.e8.	1.3	122
31	Whole Blueberry and Isolated Polyphenol-Rich Fractions Modulate Specific Gut Microbes in an In Vitro Colon Model and in a Pilot Study in Human Consumers. Nutrients, 2020, 12, 2800.	4.1	30
32	Metagenomic analysis reveals distinct patterns of gut lactobacillus prevalence, abundance, and geographical variation in health and disease. Gut Microbes, 2020, 12, 1822729.	9.8	26
33	Microbiome transfer between IL- 1 RI- 1 - and wild-type mice during high or low-fat feeding alters metabolic tissue functionality but not glucose homeostasis Proceedings of the Nutrition Society, 2020, 79, .	1.0	0
34	Baker's yeast (1→3)-β-D-glucan Influences Insulin Sensitivity in Mice with Humanized Obese Diabetic Microbiome in High-Fat Diet-Induced Obesity. Proceedings of the Nutrition Society, 2020, 79, .	1.0	0
35	Gut Microbiota Associations with Metabolic Health and Obesity Status in Older Adults. Nutrients, 2020, 12, 2364.	4.1	34
36	Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Scientific Reports, 2020, 10, 21665.	3.3	33

#	Article	IF	CITATIONS
37	The probiotic <i>L. casei</i> LC-XCALâ,,¢ improves metabolic health in a diet-induced obesity mouse model without altering the microbiome. Gut Microbes, 2020, 12, 1747330.	9.8	16
38	Microbiome alterations in IBS. Gut, 2020, 69, 2263-2264.	12.1	10
39	Diet influences the functions of the human intestinal microbiome. Scientific Reports, 2020, 10, 4247.	3.3	115
40	Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host and Microbe, 2020, 28, 258-272.e6.	11.0	160
41	Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nature Medicine, 2020, 26, 1089-1095.	30.7	48
42	Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69, 1218-1228.	12.1	465
43	Mutagenesis by Microbe: the Role of the Microbiota in Shaping the Cancer Genome. Trends in Cancer, 2020, 6, 277-287.	7.4	45
44	The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. Journal of Internal Medicine, 2020, 287, 271-282.	6.0	44
45	Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics. Applied Microbiology and Biotechnology, 2020, 104, 4705-4716.	3.6	18
46	A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2782-2858.	1.7	2,775
47	Adjusting for age improves identification of gut microbiome alterations in multiple diseases. ELife, 2020, 9, .	6.0	113
48	Dose-interval study of a dual probiotic in preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, F159-F164.	2.8	15
49	The microbiota of the mother at birth and its influence on the emerging infant oral microbiota from birth to 1 year of age: a cohort study. Journal of Oral Microbiology, 2019, 11, 1599652.	2.7	23
50	Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology, 2019, 58, 2295-2304.	1.9	106
51	Exploratory analysis of covariation of microbiota-derived vitamin K and cognition in older adults. American Journal of Clinical Nutrition, 2019, 110, 1404-1415.	4.7	26
52	Retention of Microbiota Diversity by Lactose-Free Milk in a Mouse Model of Elderly Gut Microbiota. Journal of Agricultural and Food Chemistry, 2019, 67, 2098-2112.	5.2	11
53	Heterologous gene expression in the human gut bacteria Eubacterium rectale and Roseburia inulinivorans by means of conjugative plasmids. Anaerobe, 2019, 59, 131-140.	2.1	8
54	Schistosoma mansoni Worm Infection Regulates the Intestinal Microbiota and Susceptibility to Colitis. Infection and Immunity, 2019, 87, .	2.2	52

#	Article	IF	Citations
55	Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients, 2019, 11, 1252.	4.1	109
56	International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut, 2019, 68, 1624-1632.	12.1	173
57	Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Alimentary Pharmacology and Therapeutics, 2019, 49, 1005-1012.	3.7	57
58	Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome, 2019, 7, 39.	11.1	72
59	<i>APOE</i> genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease pathophysiology. FASEB Journal, 2019, 33, 8221-8231.	0.5	124
60	The Gut Microbiota in Causation, Detection, and Treatment of Cancer. American Journal of Gastroenterology, 2019, 114, 1036-1042.	0.4	25
61	The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 2019, 10, 115-132.	9.8	209
62	Prevalence of malnutrition using harmonized definitions in older adults from different settings – A MaNuEL study. Clinical Nutrition, 2019, 38, 2389-2398.	5.0	56
63	Gut and Whole-Body Microbiota of the Honey Bee Separate Thriving and Non-thriving Hives. Microbial Ecology, 2019, 78, 195-205.	2.8	39
64	Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 2019, 19, 13.	2.3	86
65	Potentially modifiable determinants of malnutrition in older adults: AÂsystematic review. Clinical Nutrition, 2019, 38, 2477-2498.	5.0	127
66	Genus-Wide Assessment of Antibiotic Resistance in <i>Lactobacillus</i> spp. Applied and Environmental Microbiology, 2019, 85, .	3.1	190
67	The viability of probiotics in water, breast milk, and infant formula. European Journal of Pediatrics, 2018, 177, 867-870.	2.7	13
68	Tumour-associated and non-tumour-associated microbiota: Addendum. Gut Microbes, 2018, 9, 1-5.	9.8	25
69	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	13.3	717
70	Selected aspects of the human gut microbiota. Cellular and Molecular Life Sciences, 2018, 75, 81-82.	5.4	19
71	Microbiome–health interactions in older people. Cellular and Molecular Life Sciences, 2018, 75, 119-128.	5.4	80
72	The oral microbiota in colorectal cancer is distinctive and predictive. Gut, 2018, 67, 1454-1463.	12.1	425

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Lactobacillus fermentum Lf2, an Exopolysaccharide-Producing Strain Isolated from Argentine Cheese. Microbiology Resource Announcements, 2018, 7, .	0.6	3
74	Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion. Emerging Topics in Life Sciences, 2018, 2, 607-618.	2.6	22
75	The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes. , 2018, , 241-338.		2
76	Genomic Characterization of Sulphite Reducing Bacteria Isolated From the Dairy Production Chain. Frontiers in Microbiology, 2018, 9, 1507.	3.5	9
77	Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterology, 2018, 18, 131.	2.0	67
78	The Genomic Basis of Lactobacilli as Health-Promoting Organisms. , 2018, , 49-71.		0
79	Comparative Genomics of the Genus Lactobacillus Reveals Robust Phylogroups That Provide the Basis for Reclassification. Applied and Environmental Microbiology, 2018, 84, .	3.1	93
80	The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Scientific Reports, 2017, 7, 40597.	3.3	279
81	From Culture to High-Throughput Sequencing and Beyond. Gastroenterology Clinics of North America, 2017, 46, 9-17.	2.2	13
82	Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 2017, 66, 633-643.	12.1	623
83	Glycomacropeptide Sustains Microbiota Diversity and Promotes Specific Taxa in an Artificial Colon Model of Elderly Gut Microbiota. Journal of Agricultural and Food Chemistry, 2017, 65, 1836-1846.	5. 2	35
84	Forgotten fungiâ€"the gut mycobiome in human health and disease. FEMS Microbiology Reviews, 2017, 41, 479-511.	8.6	216
85	Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2017, 2, 17057.	13.3	553
86	When regulation challenges innovation: The case of the genus Lactobacillus. Trends in Food Science and Technology, 2017, 66, 187-194.	15.1	39
87	Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes, 2017, 8, 428-439.	9.8	93
88	High-throughput metataxonomic characterization of the raw milk microbiota identifies changes reflecting lactation stage and storage conditions. International Journal of Food Microbiology, 2017, 255, 1-6.	4.7	36
89	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	17.5	581
90	Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. MicrobiologyOpen, 2017, 6, e00509.	3.0	83

#	Article	IF	CITATIONS
91	Metagenomeâ€based surveillance and diagnostic approaches to studying the microbial ecology of food production and processing environments. Environmental Microbiology, 2017, 19, 4382-4391.	3.8	40
92	The contribution of microbial biotechnology to sustainable development goals: microbiome therapies. Microbial Biotechnology, 2017, 10, 1066-1069.	4.2	19
93	A clinician's guide to microbiome analysis. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 585-595.	17.8	124
94	Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME Journal, 2017, 11, 2059-2074.	9.8	112
95	Feeding the microbiota: transducer of nutrient signals for the host. Gut, 2017, 66, 1709-1717.	12.1	124
96	Impacts of Seasonal Housing and Teat Preparation on Raw Milk Microbiota: a High-Throughput Sequencing Study. Applied and Environmental Microbiology, 2017, 83, .	3.1	104
97	The Genomic Basis of Lactobacilli as Health-Promoting Organisms. Microbiology Spectrum, 2017, 5, .	3.0	29
98	Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microbial Genomics, 2017, 3, e000115.	2.0	86
99	A long and abundant non-coding RNA in Lactobacillus salivarius. Microbial Genomics, 2017, 3, e000126.	2.0	6
100	A Profile Hidden Markov Model to investigate the distribution and frequency of LanB-encoding lantibiotic modification genes in the human oral and gut microbiome. PeerJ, 2017, 5, e3254.	2.0	24
101	The Microbiome in Aging. , 2016, , 185-222.		1
102	Studying the Microbiome: "Omics―Made Accessible. Seminars in Liver Disease, 2016, 36, 306-311.	3.6	4
103	Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome, 2016, 4, 19.	11.1	51
104	Signatures of early frailty in the gut microbiota. Genome Medicine, 2016, 8, 8.	8.2	297
105	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	12.1	1,092
106	Composition and temporal stability of the gut microbiota in older persons. ISME Journal, 2016, 10, 170-182.	9.8	305
107	Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microbial Genomics, 2016, 2, e000043.	2.0	162
108	High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1327-1334.	0.8	1

#	Article	IF	Citations
109	The Gut Microbiota Composition in Dichorionic Triplet Sets Suggests a Role for Host Genetic Factors. PLoS ONE, 2015, 10, e0122561.	2.5	35
110	Helicobacter pylori, HIV and Gastric Hypochlorhydria in the Malawian Population. PLoS ONE, 2015, 10, e0132043.	2.5	12
111	Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade. Applied and Environmental Microbiology, 2015, 81, 1297-1308.	3.1	67
112	The role of the microbiota in ageing: current state and perspectives. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 131-138.	6.6	14
113	Gut microbiota and aging. Science, 2015, 350, 1214-1215.	12.6	801
114	Neonatal Sulfhemoglobinemia and Hemolytic Anemia Associated With Intestinal <i>Morganella morganii</i> . Pediatrics, 2015, 136, e1641-e1645.	2.1	27
115	In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project's reference genome database. BMC Microbiology, 2015, 15, 183.	3.3	112
116	Dietary glycaemic load associated with cognitive performance in elderly subjects. European Journal of Nutrition, 2015, 54, 557-568.	3.9	22
117	Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Applied Microbiology and Biotechnology, 2015, 99, 5801-5815.	3.6	24
118	Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. International Journal of Food Microbiology, 2015, 203, 109-121.	4.7	63
119	The neonatal gut harbours distinct bifidobacterial strains. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2015, 100, F405-F410.	2.8	29
120	Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiology, 2015, 15, 80.	3.3	34
121	In-vitro model for studying methanogens in human gut microbiota. Anaerobe, 2015, 34, 50-52.	2.1	10
122	National survey to determine current practices, training and attitudes towards advanced polypectomy in the UK. Frontline Gastroenterology, 2015, 6, 85-93.	1.8	8
123	Impact of diet on the human intestinal microbiota. Current Opinion in Food Science, 2015, 2, 71-77.	8.0	44
124	Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6, 8322.	12.8	488
125	Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette. Archaea, 2014, 2014, 1-11.	2.3	58
126	Archaea and the human gut: New beginning of an old story. World Journal of Gastroenterology, 2014, 20, 16062.	3.3	308

#	Article	IF	CITATIONS
127	MOLECULAR BIOLOGY Genomics., 2014, , 770-779.		O
128	Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?. Gut Microbes, 2014, 5, 74-82.	9.8	47
129	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	3.3	64
130	The Genome of the Predominant Equine $\langle i \rangle$ Lactobacillus $\langle j \rangle$ Species, Lactobacillus equi, Is Reflective of Its Lifestyle Adaptations to an Herbivorous Host. Genome Announcements, 2014, 2, .	0.8	1
131	Metaphor: Finding Bi-directional Best Hit homology relationships in (meta)genomic datasets. Genomics, 2014, 104, 459-463.	2.9	5
132	Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics, 2014, 15, 771.	2.8	44
133	Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach. Applied and Environmental Microbiology, 2014, 80, 6104-6113.	3.1	25
134	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	2.8	204
135	Combating inflammaging through a Mediterranean whole diet approach: The NU-AGE project's conceptual framework and design. Mechanisms of Ageing and Development, 2014, 136-137, 3-13.	4.6	131
136	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proceedings of the Nutrition Society, 2014, 73, 441-451.	1.0	33
137	Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mechanisms of Ageing and Development, 2014, 136-137, 70-75.	4.6	72
138	Intestinal microbiota, diet and health. British Journal of Nutrition, 2014, 111, 387-402.	2.3	371
139	Diet-Microbiota-Health Interactions in Older Subjects: Implications for Healthy Aging. Interdisciplinary Topics in Gerontology, 2014, 40, 141-154.	3.6	27
140	Archaebiotics. Gut Microbes, 2014, 5, 5-10.	9.8	201
141	The microbial eukaryote <i>Blastocystis</i> is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 2014, 90, 326-330.	2.7	208
142	Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience, 2014, 277, 885-901.	2.3	222
143	Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics, 2014, 15, 679.	2.8	246
144	Food and nutrient intake of Irish community-dwelling elderly subjects: Who is at nutritional risk?. Journal of Nutrition, Health and Aging, 2014, 18, 561-572.	3.3	61

#	Article	IF	CITATIONS
145	Host–microbe interactions and spatial variation of cancer in the gut. Nature Reviews Cancer, 2014, 14, 511-512.	28.4	16
146	Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63, 1913-1920.	12.1	987
147	Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 2014, 71, 183-203.	5.4	265
148	Catabolic flexibility of mammalian-associated lactobacilli. Microbial Cell Factories, 2013, 12, 48.	4.0	17
149	Effects of the Intestinal Microbiota on Behavior and Brain Biochemistry. World Review of Nutrition and Dietetics, 2013, , 56-63.	0.3	0
150	The core faecal bacterial microbiome of Irish Thoroughbred racehorses. Letters in Applied Microbiology, 2013, 57, 492-501.	2.2	90
151	Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013, 5, 234-252.	4.1	174
152	The Intestinal Microbiota and Aging. World Review of Nutrition and Dietetics, 2013, , 25-31.	0.3	2
153	Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, , 103-121.	0.3	1
154	Next-generation sequencing technologies and their impact on microbial genomics. Briefings in Functional Genomics, 2013, 12, 440-453.	2.7	65
155	Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut, 2013, 62, 220-226.	12.1	235
156	Diet-microbiota-health interactions in older subjects. Free Radical Biology and Medicine, 2013, 65, S4.	2.9	0
157	Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects. Journal of Applied Microbiology, 2013, 114, 886-898.	3.1	43
158	Alterations in intestinal microbiota of elderly Irish subjects post-antibiotic therapy. Journal of Antimicrobial Chemotherapy, 2013, 68, 214-221.	3.0	67
159	Challenges and Implications for Biomedical Research and Intervention Studies in Older Populations: Insights from the ELDERMET Study. Gerontology, 2013, 59, 114-121.	2.8	21
160	Genome Sequence of " <i>Candidatus</i> Methanomassiliicoccus intestinalis―lssoire-Mx1, a Third <i>Thermoplasmatales</i> -Related Methanogenic Archaeon from Human Feces. Genome Announcements, 2013, 1, .	0.8	85
161	Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis. Genome Biology and Evolution, 2013, 5, 1769-1780.	2.5	249
162	The individual-specific and diverse nature of the preterm infant microbiota. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2013, 98, F334-F340.	2.8	105

#	Article	IF	Citations
163	Microbiota diversity and stability of the preterm neonatal ileum and colon of two infants. MicrobiologyOpen, 2013, 2, 215-225.	3.0	40
164	Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. Journal of Medical Microbiology, 2013, 62, 457-466.	1.8	42
165	Draft Genome Sequence of Lactobacillus crispatus EM-LC1, an Isolate with Antimicrobial Activity Cultured from an Elderly Subject. Genome Announcements, 2013, 1, .	0.8	2
166	Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge. PLoS ONE, 2013, 8, e65790.	2.5	132
167	Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging, 2013, 5, 902-912.	3.1	263
168	The Human Gut Chip "HuGChipâ€; an Explorative Phylogenetic Microarray for Determining Gut Microbiome Diversity at Family Level. PLoS ONE, 2013, 8, e62544.	2.5	46
169	Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans. PLoS ONE, 2013, 8, e68919.	2.5	42
170	Influence of Adhesion and Bacteriocin Production by Lactobacillus salivarius on the Intestinal Epithelial Cell Transcriptional Response. Applied and Environmental Microbiology, 2012, 78, 5196-5203.	3.1	43
171	Genome Sequence of "Candidatus Methanomethylophilus alvus―Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens. Journal of Bacteriology, 2012, 194, 6944-6945.	2.2	155
172	Transcriptional and Metabolomic Consequences of <i>luxS</i> Inactivation Reveal a Metabolic Rather than Quorum-Sensing Role for LuxS in Lactobacillus reuteri 100-23. Journal of Bacteriology, 2012, 194, 1743-1746.	2.2	31
173	The microbiota link to irritable bowel syndrome. Gut Microbes, 2012, 3, 572-576.	9.8	102
174	Subspecies diversity in bacteriocin production by intestinal <i>Lactobacillus salivarius </i> strains. Gut Microbes, 2012, 3, 468-473.	9.8	29
175	The gut microbiota and its relationship to diet and obesity. Gut Microbes, 2012, 3, 186-202.	9.8	382
176	Draft Genome Sequences of Helicobacter pylori Strains 17874 and P79. Journal of Bacteriology, 2012, 194, 2402-2402.	2.2	8
177	An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut, 2012, 61, 997-1006.	12.1	742
178	Mechanism of protection of transepithelial barrier function by <i>Lactobacillus salivarius</i> : strain dependence and attenuation by bacteriocin production. American Journal of Physiology - Renal Physiology, 2012, 303, G1029-G1041.	3.4	75
179	Changes in the intestinal microbiota from adulthood through to old age. Clinical Microbiology and Infection, 2012, 18, 44-46.	6.0	61
180	Categorization of the gut microbiota: enterotypes or gradients?. Nature Reviews Microbiology, 2012, 10, 591-592.	28.6	260

#	Article	IF	CITATIONS
181	The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes. BMC Microbiology, 2012, 12, 190.	3.3	15
182	Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS ONE, 2012, 7, e36957.	2.5	512
183	Structure of ribose 5-phosphate isomerase from the probiotic bacterium <i>Lactobacillus salivarius</i> UCC118. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1427-1433.	0.7	8
184	Effect of Lactobacillus salivarius Bacteriocin Abp 118 on the Mouse and Pig Intestinal Microbiota. PLoS ONE, 2012, 7, e31113.	2.5	136
185	Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli. PLoS ONE, 2012, 7, e40592.	2.5	76
186	Bifidobacterium breve with \hat{l}_{\pm} -Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome. PLoS ONE, 2012, 7, e48159.	2.5	30
187	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	27.8	2,618
188	Resource partitioning in relation to cohabitation of <i>Lactobacillus</i> species in the mouse forestomach. ISME Journal, 2012, 6, 927-938.	9.8	69
189	Clostridium difficile Carriage in Elderly Subjects and Associated Changes in the Intestinal Microbiota. Journal of Clinical Microbiology, 2012, 50, 867-875.	3.9	184
190	Techniques used to characterize the gut microbiota: a guide for the clinician. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 312-322.	17.8	290
191	Î ³ -Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology, 2012, 113, 411-417.	3.1	871
192	Fibrinogenâ€binding and plateletâ€aggregation activities of a <i>Lactobacillus salivarius</i> septicaemia isolate are mediated by a novel fibrinogenâ€binding protein. Molecular Microbiology, 2012, 85, 862-877.	2.5	45
193	ELDERMET (Ireland). , 2012, , 1-11.		1
194	Correlation of rRNA gene amplicon pyrosequencing and bacterial culture for microbial compositional analysis of faecal samples from elderly Irish subjects. Journal of Applied Microbiology, 2011, 111, 467-473.	3.1	21
195	Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microbial Cell Factories, 2011, 10, S12.	4.0	41
196	Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microbial Cell Factories, 2011, 10, S13.	4.0	65
197	Production of Multiple Bacteriocins from a Single Locus by Gastrointestinal Strains of Lactobacillus salivarius. Journal of Bacteriology, 2011, 193, 6973-6982.	2.2	58
198	Lactobacillus: Host–Microbe Relationships. Current Topics in Microbiology and Immunology, 2011, 358, 119-154.	1.1	61

#	Article	IF	Citations
199	Genomic Diversity of <i>Lactobacillus salivarius</i> . Applied and Environmental Microbiology, 2011, 77, 954-965.	3.1	101
200	How beneficial is the use of probiotic supplements for the aging gut?. Aging Health, 2011, 7, 179-186.	0.3	9
201	Functional genome analysis of <i>Bifidobacterium breve</i> UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11217-11222.	7.1	328
202	Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4586-4591.	7.1	1,418
203	Comparative genomics and proteomics of Helicobacter mustelae, an ulcerogenic and carcinogenic gastric pathogen. BMC Genomics, 2010, 11, 164.	2.8	40
204	The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori. BMC Microbiology, 2010, 10, 106.	3.3	4
205	The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements. BMC Microbiology, 2010, 10, 122.	3.3	17
206	Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes, 2010, 1, 277-278.	9.8	34
207	Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, 2010, 59, 1635-1642.	12.1	808
208	Probiotic properties of <i>Lactobacillus salivarius </i> lactobacillus lactobacillus species. Future Microbiology, 2010, 5, 759-774.	2.0	109
209	Gut microbiota: Changes throughout the lifespan from infancy to elderly. International Dairy Journal, 2010, 20, 281-291.	3.0	218
210	The 2.2-Ã Structure of the HP0958 Protein from Helicobacter pylori Reveals a Kinked Anti-Parallel Coiled-Coil Hairpin Domain and a Highly Conserved Zn-Ribbon Domain. Journal of Molecular Biology, 2010, 403, 405-419.	4.2	10
211	Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research, 2010, 38, e200-e200.	14.5	808
212	Genetic tools for investigating the biology of commensal lactobacilli. Frontiers in Bioscience - Landmark, 2009, Volume, 3111.	3.0	21
213	Effect of FliK mutation on the transcriptional activity of the lf 54 sigma factor RpoN in Helicobacter pylori. Microbiology (United Kingdom), 2009, 155, 1901-1911.	1.8	12
214	Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. Journal of Medical Microbiology, 2009, 58, 996-1005.	1.8	75
215	Allelic Variation of Bile Salt Hydrolase Genes in <i>Lactobacillus salivarius</i> Does Not Determine Bile Resistance Levels. Journal of Bacteriology, 2009, 191, 5743-5757.	2.2	78
216	Microbial diversity in the human intestine and novel insights from metagenomics. Frontiers in Bioscience - Landmark, 2009, Volume, 3214.	3.0	72

#	Article	IF	CITATIONS
217	Genome-scale analyses of health-promoting bacteria: probiogenomics. Nature Reviews Microbiology, 2009, 7, 61-71.	28.6	400
218	Model for Substrate Interactions in C5a Peptidase from Streptococcus pyogenes: A $1.9\ \tilde{A}$ Crystal Structure of the Active Form of ScpA. Journal of Molecular Biology, 2009, 386, 754-772.	4.2	43
219	The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity. PLoS Genetics, 2009, 5, e1000785.	3 . 5	141
220	Megaplasmid pMP118 of Lactobacillus salivarius. Microbiology Monographs, 2009, , 311-325.	0.6	2
221	Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PLoS ONE, 2009, 4, e6669.	2.5	719
222	Isolation of lactobacilli with probiotic properties from the human stomach. Letters in Applied Microbiology, 2008, 47, 269-274.	2.2	67
223	Characterization of Endogenous Plasmids from <i>Lactobacillus salivarius</i> UCC118. Applied and Environmental Microbiology, 2008, 74, 3216-3228.	3.1	46
224	Posttranscriptional Regulation of Flagellin Synthesis in <i>Helicobacter pylori</i> by the RpoN Chaperone HP0958. Journal of Bacteriology, 2008, 190, 7975-7984.	2.2	26
225	Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli. Journal of Antimicrobial Chemotherapy, 2008, 61, 831-834.	3.0	68
226	Probiotic Bacteria Influence the Composition and Function of the Intestinal Microbiota. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	1.4	128
227	Lactobacillus phylogenomics - towards a reclassification of the genus. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2945-2954.	1.7	95
228	Distribution of Megaplasmids in Lactobacillus salivarius and Other Lactobacilli. Journal of Bacteriology, 2007, 189, 6128-6139.	2.2	53
229	Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7617-7621.	7.1	690
230	The genusLactobacillus– a genomic basis for understanding its diversity. FEMS Microbiology Letters, 2007, 269, 22-28.	1.8	157
231	HorB (HP0127) is a Gastric Epithelial Cell Adhesin. Helicobacter, 2007, 12, 200-209.	3. 5	22
232	The FliK protein and flagellar hook-length control. Protein Science, 2007, 16, 769-780.	7.6	46
233	Comparative and Functional Analysis of Sortase-Dependent Proteins in the Predicted Secretome of <i>Lactobacillus salivarius</i> UCC118. Applied and Environmental Microbiology, 2006, 72, 4143-4153.	3.1	145
234	Multireplicon genome architecture of Lactobacillus salivarius. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6718-6723.	7.1	216

#	Article	IF	CITATIONS
235	Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology (United Kingdom), 2006, 152, 3185-3196.	1.8	118
236	Molecular Basis of the Interaction between the Flagellar Export Proteins Flil and FliH from Helicobacter pylori. Journal of Biological Chemistry, 2006, 281, 508-517.	3.4	43
237	Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Applied and Environmental Microbiology, 2006, 72, 3130-3146.	3.1	75
238	Polyphasic analysis indicates that Lactobacillus salivarius subsp. salivarius and Lactobacillus salivarius subsp. salicinius do not merit separate subspecies status. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2397-2403.	1.7	50
239	SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Molecular Microbiology, 2005, 57, 650-666.	2.5	31
240	HP0958 is an essential motility gene inHelicobacter pylori. FEMS Microbiology Letters, 2005, 248, 47-55.	1.8	21
241	Isolation of Lactococcal Prolate Phage-Phage Recombinants by an Enrichment Strategy Reveals Two Novel Host Range Determinants. Journal of Bacteriology, 2005, 187, 3110-3121.	2.2	14
242	Helicobacter pylori Flagellar Hook-Filament Transition Is Controlled by a FliK Functional Homolog Encoded by the Gene HP0906. Journal of Bacteriology, 2005, 187, 5742-5750.	2.2	31
243	Essentiality of the Early Transcript in the Replication Origin of the Lactococcal Prolate Phage c2. Journal of Bacteriology, 2004, 186, 8010-8017.	2.2	3
244	Novel Chromosomally Encoded Multidrug Efflux Transporter MdeA in <i>Staphylococcus aureus</i> Antimicrobial Agents and Chemotherapy, 2004, 48, 909-917.	3.2	128
245	Failure of Surface Ring Mutant Strains of Helicobacter mustelae To Persistently Infect the Ferret Stomach. Infection and Immunity, 2003, 71, 2350-2355.	2.2	13
246	Detection and isolation of Helicobacter mustelae from stoats in New Zealand. New Zealand Veterinary Journal, 2003, 51, 142-145.	0.9	3
247	Sequence Diversity and Functional Conservation of the Origin of Replication in Lactococcal Prolate Phages. Applied and Environmental Microbiology, 2003, 69, 5104-5114.	3.1	7
248	Cloning and Expression of an Oligopeptidase, PepO, with Novel Specificity from Lactobacillus rhamnosus HN001 (DR20). Applied and Environmental Microbiology, 2002, 68, 254-262.	3.1	20
249	Phenotypic Variation of Helicobacter pylori Isolates from Geographically Distinct Regions Detected by Lectin Typing. Journal of Clinical Microbiology, 2002, 40, 227-232.	3.9	12
250	Examination of lactococcal bacteriophage c2 DNA replication using two-dimensional agarose gel electrophoresis. Gene, 2001, 278, 101-106.	2.2	10
251	Identification of Yersinia-infected blood donors by anti-Yop IgA immunoassay. Transfusion, 2001, 41, 1365-1372.	1.6	9
252	Nucleotide sequence and characterization of the cell envelope proteinase plasmid in Lactococcus lactis subsp. cremoris HP. Journal of Applied Microbiology, 2001, 91, 334-343.	3.1	19

#	Article	IF	Citations
253	Sequence and Antigenic Variability of the Helicobacter mustelae Surface Ring Protein Hsr. Infection and Immunity, 2001, 69, 3447-3450.	2.2	5
254	Helicobacter pylori motility. Microbes and Infection, 2000, 2, 1207-1214.	1.9	71
255	Isolation of <i>Helicobacter mustelae</i> it from ferrets in New Zealand. New Zealand Veterinary Journal, 2000, 48, 65-69.	0.9	18
256	Potentiation of methicillin activity against methicillin-resistant <i>Staphylococcus aureus</i> by diterpenes. FEMS Microbiology Letters, 1999, 179, 233-239.	1.8	124
257	Molecular Characterization of a Flagellar Export Locus of <i>Helicobacter pylori</i> li>. Infection and Immunity, 1999, 67, 2060-2070.	2.2	38
258	Molecular Characterization of H. pylori Surface Antigens. , 1997, 8, 177-190.		1
259	Evidence for ethnic tropism of Helicobacter pylori. Infection and Immunity, 1997, 65, 3708-3712.	2.2	59
260	The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. Journal of Bacteriology, 1995, 177, 6049-6057.	2.2	92
261	Response from O'Toole and Trust. Trends in Microbiology, 1995, 3, 170-171.	7.7	5
262	Identification and molecular characterization of a major ring-forming surface protein from the gastric pathogen Helicobacter mustelae. Molecular Microbiology, 1994, 11, 349-361.	2.5	46
263	Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Molecular Microbiology, 1994, 14, 691-703.	2.5	104
264	Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori. Journal of Bacteriology, 1994, 176, 5938-5948.	2.2	49
265	The gamma-hemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infection and Immunity, 1993, 61, 768-771.	2.2	86
266	Two major classes in the M protein family in group A streptococci Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8661-8665.	7.1	82
267	Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type. Molecular Microbiology, 1992, 6, 1185-1194.	2.5	116
268	Isolation and biochemical and molecular analyses of a species-specific protein antigen from the gastric pathogen Helicobacter pylori. Journal of Bacteriology, 1991, 173, 505-513.	2,2	130
269	High-affinity binding of the basement membrane proteins collagen type IV and laminin to the gastric pathogen Helicobacter pylori. Infection and Immunity, 1991, 59, 4398-4404.	2.2	100
270	Nucleotide sequence of the epidermolytic toxin A gene of Staphylococcus aureus. Journal of Bacteriology, 1987, 169, 3910-3915.	2.2	75

#	Article	IF	CITATIONS
271	Molecular cloning and expression of the epidermolytic toxin A gene of Staphylococcus aureus. Microbial Pathogenesis, 1986, 1, 583-594.	2.9	53
272	Epidermolytic toxin serotype B ofStaphylococcus aureusis plasmid-encoded. FEMS Microbiology Letters, 1986, 36, 311-314.	1.8	22
273	Epidermolytic toxin serotype B of Staphylococcus aureus is plasmid-encoded. FEMS Microbiology Letters, 1986, 36, 311-314.	1.8	1
274	Studying the Mammalian Intestinal Microbiome Using Animal Models., 0,, 4.4.2-1-4.4.2-10.		1
275	Archaebiotics: Archaea as Pharmabiotics for Treating Chronic Disease in Humans?., 0, , .		5
276	Cell Envelope. , 0, , 69-80.		4