
Fernando De la Cuesta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1802424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ldentification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney International, 2014, 85, 103-111.	2.6	135
2	Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. Journal of Proteomics, 2014, 96, 92-102.	1.2	127
3	Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	81
4	A Proteomic Focus on the Alterations Occurring at the Human Atherosclerotic Coronary Intima. Molecular and Cellular Proteomics, 2011, 10, M110.003517.	2.5	71
5	Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Translational Research, 2015, 166, 474-484.e4.	2.2	62
6	Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis. Journal of Proteomics, 2012, 75, 2960-2971.	1.2	56
7	Circulating Human Monocytes in the Acute Coronary Syndrome Express a Characteristic Proteomic Profile. Journal of Proteome Research, 2007, 6, 876-886.	1.8	52
8	Analysis of the Plasma Proteome Associated with Acute Coronary Syndrome: Does a Permanent Protein Signature Exist in the Plasma of ACS Patients?. Journal of Proteome Research, 2010, 9, 4420-4432.	1.8	52
9	Deregulation of smooth muscle cell cytoskeleton within the human atherosclerotic coronary media layer. Journal of Proteomics, 2013, 82, 155-165.	1.2	49
10	Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing. European Heart Journal, 2020, 41, 1024-1036.	1.0	43
11	Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Communication and Signaling, 2019, 17, 143.	2.7	41
12	Identification of a circulating microvesicle protein network involved in ST-elevation myocardial infarction. Thrombosis and Haemostasis, 2014, 112, 716-726.	1.8	39
13	MALDI-Imaging Mass Spectrometry: a step forward in the anatomopathological characterization of stenotic aortic valve tissue. Scientific Reports, 2016, 6, 27106.	1.6	39
14	iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease. Scientific Reports, 2015, 5, 17290.	1.6	36
15	Citric Acid Metabolism in Resistant Hypertension. Hypertension, 2017, 70, 1049-1056.	1.3	36
16	KLK1 and ZG16B proteins and arginine–proline metabolism identified as novel targets to monitor atherosclerosis, acute coronary syndrome and recovery. Metabolomics, 2015, 11, 1056-1067.	1.4	35
17	Cytoskeleton deregulation and impairment in amino acids and energy metabolism in early atherosclerosis at aortic tissue with reflection in plasma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 725-732.	1.8	35
18	Recent advances in atherosclerosis-based proteomics: new biomarkers and a future perspective. Expert Review of Proteomics, 2008, 5, 679-691.	1.3	34

Fernando De la Cuesta

#	Article	IF	CITATIONS
19	Patients with calcific aortic stenosis exhibit systemic molecular evidence of ischemia, enhanced coagulation, oxidative stress and impaired cholesterol transport. International Journal of Cardiology, 2016, 225, 99-106.	0.8	34
20	Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction. Journal of Proteomics, 2014, 109, 368-381.	1.2	33
21	Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget, 2017, 8, 44217-44231.	0.8	33
22	Hypertensive patients exhibit an altered metabolism. A specific metabolite signature in urine is able to predict albuminuria progression. Translational Research, 2016, 178, 25-37.e7.	2.2	28
23	Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology. Journal of Proteomics, 2015, 126, 245-251.	1.2	27
24	Tissue proteomics in atherosclerosis: elucidating the molecular mechanisms of cardiovascular diseases. Expert Review of Proteomics, 2009, 6, 395-409.	1.3	24
25	Urinary alpha-1 antitrypsin and CD59 glycoprotein predict albuminuria development in hypertensive patients under chronic renin-angiotensin system suppression. Cardiovascular Diabetology, 2016, 15, 8.	2.7	24
26	Atorvastatin modifies the protein profile of circulating human monocytes after an acute coronary syndrome. Proteomics, 2009, 9, 1982-1993.	1.3	23
27	Modification of the Secretion Pattern of Proteases, Inflammatory Mediators, and Extracellular Matrix Proteins by Human Aortic Valve is Key in Severe Aortic Stenosis. Molecular and Cellular Proteomics, 2013, 12, 2426-2439.	2.5	23
28	Valvular Aortic Stenosis: A Proteomic Insight. Clinical Medicine Insights: Cardiology, 2010, 4, CMC.S3884.	0.6	22
29	Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria. Oncotarget, 2017, 8, 15553-15562.	0.8	20
30	Pharmacological Blockade of NLRP3 Inflammasome/IL-1β-Positive Loop Mitigates Endothelial Cell Senescence and Dysfunction. , 2022, 13, 284.		19
31	A novel methodology for the analysis of membrane and cytosolic subâ€proteomes of erythrocytes by 2â€DE. Electrophoresis, 2009, 30, 4095-4108.	1.3	18
32	Prediction of development and maintenance of high albuminuria during chronic renin–angiotensin suppression by plasma proteomics. International Journal of Cardiology, 2015, 196, 170-177.	0.8	18
33	Plasma Molecular Signatures in Hypertensive Patients With Renin–Angiotensin System Suppression. Hypertension, 2016, 68, 157-166.	1.3	18
34	A role for the membrane proteome in human chronic kidney disease erythrocytes. Translational Research, 2012, 160, 374-383.	2.2	17
35	Potential Roles of Extracellular Vesicles as Biomarkers and a Novel Treatment Approach in Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 9011.	1.8	16
36	Vascular proteomics. Proteomics - Clinical Applications, 2007, 1, 1102-1122.	0.8	14

Fernando De la Cuesta

#	Article	IF	CITATIONS
37	An optimum method designed for 2â€Ð DIGE analysis of human arterial intima and media layers isolated by laser microdissection. Proteomics - Clinical Applications, 2009, 3, 1174-1184.	0.8	14
38	A clinical perspective on the utility of alpha 1 antichymotrypsin for the early diagnosis of calcific aortic stenosis. Clinical Proteomics, 2017, 14, 12.	1.1	14
39	Lipid and protein maps defining arterial layers in atherosclerotic aorta. Data in Brief, 2015, 4, 328-331.	0.5	13
40	Immune system deregulation in hypertensive patients chronically RAS suppressed developing albuminuria. Scientific Reports, 2017, 7, 8894.	1.6	13
41	Obtención de un protocolo óptimo para el análisis proteómico de válvulas aórticas humanas sanas y estenóticas. Revista Espanola De Cardiologia, 2010, 63, 46-53.	0.6	9
42	Human Adenovirus Serotype 5 Is Sensitive to IgM-Independent Neutralization In Vitro and In Vivo. Viruses, 2019, 11, 616.	1.5	7
43	Cardiovascular Proteomics. Current Proteomics, 2006, 3, 147-170.	0.1	6
44	A comprehensive study of calcific aortic stenosis: from rabbit to human samples. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	6
45	NLRP3 Inflammasome in Vascular Disease: A Recurrent Villain to Combat Pharmacologically. Antioxidants, 2022, 11, 269.	2.2	6
46	Development of an Optimal Protocol for the Proteomic Analysis of Stenotic and Healthy Aortic Valves. Revista Espanola De Cardiologia (English Ed), 2010, 63, 46-53.	0.4	5
47	Pharmacoproteomics in Cardiac Hypertrophy and Atherosclerosis. Cardiovascular & Hematological Disorders Drug Targets, 2009, 9, 141-148.	0.2	4
48	Secretome of Human Aortic Valves. Methods in Molecular Biology, 2013, 1005, 237-243.	0.4	4
49	Characterization of Membrane and Cytosolic Proteins of Erythrocytes. Methods in Molecular Biology, 2013, 1000, 71-80.	0.4	4
50	Contribution of proteomics to the management of vascular disorders. Translational Proteomics, 2015, 7, 3-14.	1.2	3
51	Laser Microdissection and Saturation Labeling DIGE Method for the Analysis of Human Arteries. Methods in Molecular Biology, 2013, 1000, 21-32.	0.4	2
52	Two-Dimensional Electrophoresis and Identification by Mass Spectrometry. Methods in Molecular Biology, 2017, 1592, 71-78.	0.4	1
53	Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis. Methods in Molecular Biology, 2017, 1619, 141-149.	0.4	1
54	Characterization and Analysis of Human Arterial Tissue Secretome by 2-DE and nLC-MS/MS. Methods in Molecular Biology, 2013, 1000, 81-90.	0.4	0

#	Article	IF	CITATIONS
55	Proteomics Toward Biomarkers Discovery and Risk Assessment. , 2013, , 115-130.		Ο