Željko Knez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801866/publications.pdf

Version: 2024-02-01

269 papers 11,852 citations

25034 57 h-index 97 g-index

272 all docs

272 docs citations

times ranked

272

12598 citing authors

#	Article	IF	Citations
1	Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 2005, 89, 191-198.	8.2	838
2	Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules, 2016, 21, 901.	3.8	666
3	Industrial applications of supercritical fluids: A review. Energy, 2014, 77, 235-243.	8.8	372
4	Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chemistry, 2006, 96, 597-605.	8.2	356
5	Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chemistry, 2000, 71, 229-233.	8.2	263
6	Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 2009, 90, 246-254.	5.2	255
7	Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules, 2018, 23, 649.	3.8	242
8	Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules, 2019, 24, 1960.	3.8	230
9	Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. Journal of Agricultural and Food Chemistry, 2013, 61, 8003-8025.	5.2	199
10	Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. Journal of Colloid and Interface Science, 2007, 310, 362-368.	9.4	185
11	Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chemistry, 2003, 80, 275-282.	8.2	173
12	Antioxidant and antimicrobial activity of guarana seed extracts. Food Chemistry, 2007, 104, 1258-1268.	8.2	172
13	Micronization of drugs using supercritical carbon dioxide. International Journal of Pharmaceutics, 1999, 182, 33-39.	5.2	163
14	Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food and Bioproducts Processing, 2012, 90, 215-223.	3.6	149
15	Particles formation and particle design using supercritical fluids. Current Opinion in Solid State and Materials Science, 2003, 7, 353-361.	11.5	147
16	Green corrosion inhibitors for aluminium and its alloys: a review. RSC Advances, 2017, 7, 27299-27330.	3.6	134
17	Lipase-catalyzed synthesis of fatty acid fructose esters. Journal of Food Engineering, 2006, 77, 880-886.	5.2	128
18	Compressed gases as alternative enzymatic-reaction solvents: a short review. Journal of Supercritical Fluids, 2002, 23, 29-42.	3.2	124

#	Article	IF	CITATIONS
19	Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 2021, 26, 753.	3.8	122
20	Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosnian Journal of Basic Medical Sciences, 2019, 19, 14-23.	1.0	120
21	Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. Journal of Chemical Technology and Biotechnology, 2001, 76, 1260-1266.	3 . 2	114
22	Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity. Journal of Supercritical Fluids, 2008, 45, 338-345.	3.2	110
23	(Bio)Nanotechnology in Food Science—Food Packaging. Nanomaterials, 2021, 11, 292.	4.1	106
24	Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydrate Polymers, 2014, 113, 272-278.	10.2	105
25	Chia Seeds (Salvia Hispanica L.): An Overviewâ€"Phytochemical Profile, Isolation Methods, and Application. Molecules, 2020, 25, 11.	3.8	105
26	Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients, 2019, 11, 257.	4.1	102
27	Measurement of CO2 solubility and diffusivity in poly(l-lactide) and poly(d,l-lactide-co-glycolide) by magnetic suspension balance. Journal of Supercritical Fluids, 2008, 47, 296-301.	3. 2	99
28	Are supercritical fluids solvents for the future?. Chemical Engineering and Processing: Process Intensification, 2019, 141, 107532.	3.6	99
29	Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase. Journal of Magnetism and Magnetic Materials, 2010, 322, 179-185.	2.3	97
30	Enzymatic reactions in dense gases. Journal of Supercritical Fluids, 2009, 47, 357-372.	3.2	95
31	Silica aerogels modified with mercapto functional groups used for Cu(II) and Hg(II) removal from aqueous solutions. Desalination, 2011, 269, 223-230.	8.2	95
32	Vapor–liquid equilibrium of binary CO2–organic solvent systems (ethanol, tetrahydrofuran,) Tj ETQq0 0 0 rgI	BT ₃ .2verlo	ck 10 Tf 50 2
33	Improvement of nifedipine dissolution characteristics using supercritical CO2. International Journal of Pharmaceutics, 1997, 148, 123-130.	5.2	84
34	High pressure extraction of vitamin E-rich oil from Silybum marianum. Food Chemistry, 2001, 74, 355-364.	8.2	83
35	Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity. Journal of Hazardous Materials, 2009, 165, 1114-1118.	12.4	80
36	Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes. Toxicology in Vitro, 2013, 27, 1267-1276.	2.4	79

#	Article	IF	CITATIONS
37	Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides. Catalysts, 2020, 10, 237.	3.5	79
38	Supercritical fluid extraction of chamomile flower heads: Comparison with conventional extraction, kinetics and scale-up. Journal of Supercritical Fluids, 2007, 43, 192-198.	3.2	78
39	Glycerol reforming in supercritical water; a short review. Renewable and Sustainable Energy Reviews, 2013, 23, 40-48.	16.4	78
40	Immobilization of horseradish peroxidase as crosslinked enzyme aggregates (CLEAs). Process Biochemistry, 2011, 46, 765-769.	3.7	76
41	Optimization of (R,S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 24-28.	1.8	73
42	Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. Journal of Non-Crystalline Solids, 2016, 432, 519-526.	3.1	73
43	Extraction of lutein from Marigold flower petals – Experimental kinetics and modelling. LWT - Food Science and Technology, 2008, 41, 2008-2016.	5.2	72
44	Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water. Food Chemistry, 2015, 166, 316-323.	8.2	72
45	Hydrothermal treatment of biomass for energy and chemicals. Energy, 2016, 116, 1312-1322.	8.8	71
46	Preparation of multi-membrane alginate aerogels used for drug delivery. Journal of Supercritical Fluids, 2013, 79, 209-215.	3.2	70
47	Solubility of Nifedipine and Nitrendipine in Supercritical CO2. Journal of Chemical & Data, 1995, 40, 216-220.	1.9	69
48	Synthesis of Oleic Acid Esters Catalyzed by Immobilized Lipase. Journal of Agricultural and Food Chemistry, 1996, 44, 338-342.	5.2	67
49	Silica aerogels as supports for lipase catalyzed esterifications at sub- and supercritical conditions. Journal of Supercritical Fluids, 2003, 27, 169-178.	3.2	67
50	Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. Journal of Supercritical Fluids, 2007, 41, 74-81.	3.2	67
51	Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio)degradation. Journal of Cleaner Production, 2020, 275, 124121.	9.3	65
52	Extraction of chilli pepper (var. Byedige) with supercritical CO2: Effect of pressure and temperature on capsaicinoid and colour extraction efficiency. Food Chemistry, 2004, 87, 51-58.	8.2	63
53	Measurement and Modeling of the CO ₂ Solubility in Poly(ethylene glycol) of Different Molecular Weights. Journal of Chemical & Data, 2008, 53, 185-188.	1.9	62
54	Formation of polysaccharide aerogels in ethanol. RSC Advances, 2015, 5, 77362-77371.	3.6	62

#	Article	IF	Citations
55	Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules, 2020, 25, 5946.	3.8	62
56	Comparison of different methods for determination of the S–L–G equilibrium curve of a solid component in the presence of a compressed gas. Fluid Phase Equilibria, 2000, 173, 297-310.	2.5	61
57	Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: Kinetics and thermodynamics. Journal of Supercritical Fluids, 2007, 41, 92-101.	3.2	60
58	Chemicals and value added compounds from biomass using sub- and supercritical water. Journal of Supercritical Fluids, 2018, 133, 591-602.	3.2	60
59	Antioxidant and Antimicrobial Activity of Rosemary Extract in Chicken Frankfurters. Journal of Food Science, 2006, 71, C425-C429.	3.1	59
60	Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. Journal of Supercritical Fluids, 2007, 43, 74-80.	3.2	58
61	Lipase-catalyzed esterification of citronellol with lauric acid in supercritical carbon dioxide/co-solvent media. Journal of Supercritical Fluids, 2007, 43, 199-203.	3.2	57
62	Adsorption of Water Vapor on Silica, Alumina, and Their Mixed Oxide Aerogels. Journal of Chemical & Engineering Data, 2001, 46, 858-860.	1.9	54
63	Exosomes Engineering and Their Roles as Therapy Delivery Tools, Therapeutic Targets, and Biomarkers. International Journal of Molecular Sciences, 2021, 22, 9543.	4.1	52
64	Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. Journal of Supercritical Fluids, 2015, 106, 16-22.	3.2	51
65	Supercritical impregnation of drugs and supercritical fluid deposition of metals into aerogels. Journal of Materials Science, 2015, 50, 1-12.	3.7	51
66	Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydrate Polymers, 2017, 166, 365-376.	10.2	50
67	Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules, 2018, 23, 1408.	3.8	50
68	Diffusion of methanol–liquid CO2 and methanol–supercritical CO2 in silica aerogels. Journal of Non-Crystalline Solids, 1997, 221, 163-169.	3.1	48
69	Chemical Composition of Juniperus communisL. Fruits Supercritical CO2Extracts:Â Dependence on Pressure and Extraction Time. Journal of Agricultural and Food Chemistry, 2005, 53, 2630-2636.	5. 2	48
70	Sub- and supercritical water for chemical recycling of polyethylene terephthalate waste. Chemical Engineering Science, 2021, 233, 116389.	3.8	47
71	Separation of parthenolide from feverfew: performance of conventional and high-pressure extraction techniques. Separation and Purification Technology, 2005, 41, 13-20.	7.9	46
72	Isolation of bioactive compounds from spruce bark waste using sub- and supercritical fluids. Journal of Supercritical Fluids, 2016, 117, 243-251.	3.2	46

#	Article	IF	CITATIONS
73	Solubility of Solids in Sub- and Supercritical Fluids: A Review 2010–2017. Journal of Chemical & Data, 2018, 63, 860-884.	1.9	46
74	Effect of Temperature and Pressure on the Behavior of Poly(ε-caprolactone) in the Presence of Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2013, 52, 15594-15601.	3.7	45
75	Hydrothermal Degradation of Cellulose at Temperature from 200 to 300 °C. Industrial & mp; Engineering Chemistry Research, 2018, 57, 6576-6584.	3.7	45
76	Extraction and formulation of anthocyanin-concentrates from grape residues. Journal of Supercritical Fluids, 2008, 45, 32-36.	3.2	40
77	Application of supercritical and subcritical fluids in food processing. Food Quality and Safety, 2018, 2, 59-67.	1.8	40
78	Phase equilibria of the vitamins D2, D3 and K3 in binary systems with CO2 and propane. Journal of Supercritical Fluids, 2001, 20, 131-144.	3.2	39
79	Influence of the aromatic ring substituents on phase equilibria of vanillins in binary systems with CO2. Fluid Phase Equilibria, 2005, 231, 11-19.	2.5	39
80	Solubility of capsaicin in dense CO2. Journal of Supercritical Fluids, 1992, 5, 251-255.	3.2	38
81	Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnology and Bioengineering, 2007, 97, 1366-1375.	3.3	38
82	Isolation of chlorophylls from stinging nettle (Urtica dioica L.). Separation and Purification Technology, 2007, 57, 37-46.	7.9	38
83	Synthesis and Use of Organic Biodegradable Aerogels as Drug Carriers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 873-886.	3.5	38
84	Subcritical extraction of oil from black and white chia seeds with n-propane and comparison with conventional techniques. Journal of Supercritical Fluids, 2018, 140, 182-187.	3.2	38
85	Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials, 2021, 14, 4191.	2.9	38
86	Comparison of the Esterification of Fructose and Palmitic Acid in Organic Solvent and in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2005, 44, 9631-9635.	3.7	37
87	Enzymatic reactions in dense gases. Biochemical Engineering Journal, 2005, 27, 120-126.	3.6	36
88	<i>In vitro</i> antioxidant and antiproliferative activity of three rosemary (<i>Rosmarinus) Tj ETQq0 0 0 rgBT /Ove 47, 2052-2062.</i>	erlock 10 1 2.7	rf 50 147 Td 35
89	Particle Formation and Product Formulation Using Supercritical Fluids. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 379-407.	6.8	35
90	Solubility of Binary Solid Mixture Î ² -Caroteneâ [^] Capsaicin in Dense CO2. Journal of Agricultural and Food Chemistry, 1997, 45, 2066-2069.	5.2	34

#	Article	IF	CITATIONS
91	Estimation of solid solubilities in supercritical carbon dioxide: Pengâ€"Robinson adjustable binary parameters in the near critical region. Fluid Phase Equilibria, 2002, 203, 111-132.	2.5	34
92	Immobilization of cholesterol oxidase to finely dispersed silica-coated maghemite nanoparticles based magnetic fluid. Applied Surface Science, 2010, 256, 4596-4600.	6.1	34
93	Lipase-catalyzed esterification of lactic acid in supercritical carbon dioxide. Journal of Supercritical Fluids, 2012, 66, 192-197.	3.2	34
94	Enzymatic reactions in subcritical and supercritical fluids. Journal of Supercritical Fluids, 2018, 134, 133-140.	3.2	34
95	Gradual hydrophobic surface functionalization of dry silica aerogels by reaction with silane precursors dissolved in supercritical carbon dioxide. Journal of Supercritical Fluids, 2013, 84, 74-79.	3.2	33
96	Hydrothermal decomposition of polyethylene waste to hydrocarbons rich oil. Journal of Supercritical Fluids, 2021, 169, 105136.	3.2	33
97	Application of HPLC with electrochemical detection for the determination of low levels of antioxidants. Journal of Food Composition and Analysis, 2007, 20, 539-545.	3.9	32
98	Antioxidant activity of mandarin (Citrus reticulata) peel. Acta Periodica Technologica, 2010, , 195-203.	0.2	32
99	Solubility and diffusivity of CO2 in poly(l-lactide)–hydroxyapatite and poly(d,l-lactide-co-glycolide)–hydroxyapatite composite biomaterials. Journal of Supercritical Fluids, 2011, 55, 1046-1051.	3.2	32
100	Isolation of phenolic compounds from larch wood waste using pressurized hot water: extraction, analysis and economic evaluation. Cellulose, 2015, 22, 3359-3375.	4.9	32
101	Modelling high pressure extraction processes. Computers and Chemical Engineering, 2001, 25, 879-886.	3.8	31
102	Optimization of hydrolysis of rutin in subcritical water using response surface methodology. Journal of Supercritical Fluids, 2015, 104, 145-152.	3.2	31
103	A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels, 2022, 8, 438.	4.5	31
104	Enzymatic synthesis of citronellol laurate in organic media and in supercritical carbon dioxide. Biochemical Engineering Journal, 2008, 42, 6-12.	3.6	30
105	Thermal properties of polysaccharide aerogels. Journal of Thermal Analysis and Calorimetry, 2017, 127, 363-370.	3.6	30
106	Parameter optimization for the enzymatic hydrolysis of sunflower oil in high-pressure reactors. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 643-646.	1.9	29
107	Rosemary extracts improve flowâ€mediated dilatation of the brachial artery and plasma PAlâ€1 activity in healthy young volunteers. Phytotherapy Research, 2011, 25, 402-407.	5.8	29
108	Investigation of thermodynamic properties of the binary system polyethylene glycol/CO2 using new methods. Journal of Supercritical Fluids, 2014, 87, 50-58.	3.2	29

#	Article	IF	CITATIONS
109	Isolation, characterization and formulation of curcuminoids and in vitro release study of the encapsulated particles. Journal of Supercritical Fluids, 2015, 103, 48-54.	3.2	29
110	Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. European Journal of Medicinal Chemistry, 2017, 136, 294-304.	5. 5	28
111	Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers. Journal of Non-Crystalline Solids, 2018, 481, 486-493.	3.1	28
112	Kinetics of supercritical carbon dioxide extraction of borage and evening primrose seed oil. European Journal of Lipid Science and Technology, 2006, 108, 569-576.	1.5	27
113	Biodegradable polymers, current trends of research and their applications, a review. Chemical Industry and Chemical Engineering Quarterly, 2020, 26, 401-418.	0.7	27
114	Phase equilibria in systems containing \hat{l}_{\pm} -tocopherol and dense gas. Journal of Supercritical Fluids, 2003, 26, 181-191.	3.2	26
115	Mathematical modelling of the solubility of supercritical CO2 in poly(l-lactide) and poly(d,l-lactide-co-glycolide). Journal of Supercritical Fluids, 2009, 50, 320-326.	3.2	26
116	Solubility of some solid triazine herbicides in supercritical carbon dioxide. Fluid Phase Equilibria, 1998, 152, 95-108.	2.5	25
117	Hydrothermal Degradation of Rutin: Identification of Degradation Products and Kinetics Study. Journal of Agricultural and Food Chemistry, 2016, 64, 9196-9202.	5. 2	24
118	Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. Journal of Supercritical Fluids, 2017, 130, 17-22.	3.2	24
119	Hyper-activation of ß-galactosidase from Aspergillus oryzae via immobilization onto amino-silane and chitosan magnetic maghemite nanoparticles. Journal of Cleaner Production, 2018, 179, 225-234.	9.3	24
120	Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation. Scientific Reports, 2020, 10, 19478.	3.3	24
121	Preparation and Characterization of Chitosan-Coated Pectin Aerogels: Curcumin Case Study. Molecules, 2020, 25, 1187.	3.8	24
122	Solubility and diffusivity of CO2 in carboxylated polyesters. Journal of Supercritical Fluids, 2010, 51, 306-311.	3.2	23
123	High pressure impregnation of vitamin D 3 into polysaccharide aerogels using moderate and low temperatures. Journal of Supercritical Fluids, 2016, 118, 171-177.	3.2	23
124	Modified freezing method for measuring the gas solubility along the solid–liquid–gas equilibrium line. Fluid Phase Equilibria, 2003, 205, 233-247.	2.5	22
125	Isolation and concentration of natural antioxidants with high-pressure extraction. Innovative Food Science and Emerging Technologies, 2004, 5, 245-248.	5.6	22
126	Enzymatic Reactions in High-Pressure Membrane Reactors. Industrial & Engineering Chemistry Research, 2005, 44, 9619-9625.	3.7	22

#	Article	IF	CITATIONS
127	Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. Journal of Supercritical Fluids, 2019, 154, 104629.	3.2	22
128	Development of Chitosan Functionalized Magnetic Nanoparticles with Bioactive Compounds. Nanomaterials, 2020, 10, 1913.	4.1	22
129	Processing Polymeric Biomaterials using Supercritical CO ₂ . Chemie-Ingenieur-Technik, 2011, 83, 1371-1380.	0.8	21
130	Antimicrobial activity of n-butyl lactate obtained via enzymatic esterification of lactic acid with n-butanol in supercritical trifluoromethane. Journal of Supercritical Fluids, 2014, 85, 143-150.	3.2	21
131	Optimisation of critical parameters during alginate aerogels' production. Journal of Non-Crystalline Solids, 2016, 443, 112-117.	3.1	21
132	Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions. Energy, 2018, 152, 190-201.	8.8	21
133	Optimisation of n-octyl oleate enzymatic synthesis over Rhizomucor miehei lipase. Bioprocess and Biosystems Engineering, 2006, 29, 119-127.	3.4	20
134	Comparison of ionic and non-ionic drug release from multi-membrane spherical aerogels. International Journal of Pharmaceutics, 2013, 454, 58-66.	5.2	20
135	Interfacial tension and gas solubility of molten polymer polyethylene glycol in contact with supercritical carbon dioxide and argon. Journal of Supercritical Fluids, 2016, 108, 45-55.	3.2	20
136	PH sensitive mesoporous materials for immediate or controlled release of NSAID. Microporous and Mesoporous Materials, 2016, 224, 190-200.	4.4	20
137	Redlich–Kwong equation of state for modelling the solubility of methane in water over a wide range of pressures and temperatures. Fluid Phase Equilibria, 2016, 408, 108-114.	2.5	20
138	Extraction Techniques and Analytical Methods for Characterization of Active Compounds in Origanum Species. Molecules, 2020, 25, 4735.	3.8	20
139	High-pressure enzymatic hydrolysis of oil. European Journal of Lipid Science and Technology, 2002, 104, 381-386.	1.5	19
140	Insights in starch acetylation in sub- and supercritical CO2. Carbohydrate Research, 2011, 346, 1224-1231.	2.3	19
141	Two-stage extraction of antitumor, antioxidant and antiacetylcholinesterase compounds from Ganoderma lucidum fruiting body. Journal of Supercritical Fluids, 2014, 91, 53-60.	3.2	19
142	Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. Plants, 2021, 10, 566.	3.5	19
143	Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying. Acta Chimica Slovenica, 2015, 62, 479-487.	0.6	19
144	Determination of S–L phase transitions under gas pressure. Journal of Supercritical Fluids, 2010, 55, 648-652.	3.2	18

#	Article	IF	Citations
145	Preparation and characterization of polysaccharide - silica hybrid aerogels. Scientific Reports, 2019, 9, 16492.	3.3	18
146	Separation of active compounds from tobacco waste using subcritical water extraction. Journal of Supercritical Fluids, 2019, 153, 104593.	3.2	18
147	A Comprehensive Study of the Antibacterial Activity of Bioactive Juice and Extracts from Pomegranate (Punica granatum L.) Peels and Seeds. Plants, 2021, 10, 1554.	3 . 5	18
148	Application of supercritical fluid extraction for separation of nutraceuticals and other phytochemicals from plant material. Macedonian Journal of Chemistry and Chemical Engineering, 2013, 32, 183.	0.6	18
149	Phase equilibria of vanillins in compressed gases. Journal of Supercritical Fluids, 2007, 43, 237-248.	3.2	17
150	Bio-nanofibrous mats as potential delivering systems of natural substances. Textile Reseach Journal, 2017, 87, 444-459.	2.2	17
151	Enzymatic activity of Lamino acid oxidase from snake venom Crotalus adamanteus in supercritical CO2. Biocatalysis and Biotransformation, 2005, 23, 315-321.	2.0	16
152	Activity of cellulase and α-amylase from Hortaea werneckii after cell treatment with supercritical carbon dioxide. Journal of Supercritical Fluids, 2013, 78, 143-148.	3.2	16
153	Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering. Acta Pharmaceutica, 2020, 70, 1-15.	2.0	16
154	Phase equlibiria and diffusivity of dense gases in various polyethylenes. Journal of Supercritical Fluids, 2013, 78, 54-62.	3.2	15
155	Enzyme-catalyzed esterification of d,l-lactic acid in different SCF/IL media. Journal of Supercritical Fluids, 2016, 107, 414-421.	3.2	15
156	Supercritical CO2 mediated functionalization of highly porous emulsion-derived foams: ScCO2 absorption and epoxidation. Journal of CO2 Utilization, 2017, 21, 336-341.	6.8	15
157	Advantages and disadvantages of using SC CO2 for enzyme release from halophilic fungi. Journal of Supercritical Fluids, 2019, 143, 286-293.	3.2	15
158	Pharmacodynamics of malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. Biomedicine and Pharmacotherapy, 2020, 132, 110877.	5.6	15
159	Supercritical Fluid and Conventional Extractions of High Value-Added Compounds from Pomegranate Peels Waste: Production, Quantification and Antimicrobial Activity of Bioactive Constituents. Plants, 2022, 11, 928.	3 . 5	15
160	Preparation of WO3 aerogel catalysts using supercritical CO2 drying. Journal of Non-Crystalline Solids, 2004, 350, 308-313.	3.1	14
161	Phase behavior of sunflower oil and soybean oil in propane and sulphur hexafluoride. Journal of Supercritical Fluids, 2009, 51, 109-114.	3.2	14
162	Phenolic content and antioxidant potential of macerated white wines. European Food Research and Technology, 2011, 233, 465-472.	3.3	14

#	Article	IF	CITATIONS
163	Density and viscosity of the binary polyethylene glycol/CO2 systems. Journal of Supercritical Fluids, 2014, 95, 641-668.	3.2	14
164	Enhanced activity of immobilized transglutaminase for cleaner production technologies. Journal of Cleaner Production, 2019, 240, 118218.	9.3	14
165	The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules, 2020, 25, 4992.	3.8	14
166	Antimicrobial Efficiency of Aloe arborescens and Aloe barbadensis Natural and Commercial Products. Plants, 2021, 10, 92.	3.5	14
167	Synthesis of barium titanate using supercritical CO2 drying of gels. Journal of Supercritical Fluids, 2001, 19, 209-215.	3.2	13
168	Phase equilibrium data of hydrogen in pyrolysis oil and hydrogenated pyrolysis oil at elevated pressures. Journal of Supercritical Fluids, 2013, 80, 86-89.	3.2	13
169	Solubility and binary diffusion coefficient of argon in polyethylene glycols of different molecular weights. Journal of Supercritical Fluids, 2015, 103, 10-17.	3.2	13
170	Formulation of nimodipine, fenofibrate, and o-vanillin with Brij S100 and PEG 4000 using the PGSSâ,,¢ process. Journal of Supercritical Fluids, 2018, 135, 245-253.	3.2	13
171	Sub- and Supercritical Extraction of Slovenian Hops (Humulus lupulus L.) Aurora Variety Using Different Solvents. Plants, 2021, 10, 1137.	3.5	13
172	Green Techniques for Preparation of Red Beetroot Extracts with Enhanced Biological Potential. Antioxidants, 2022, 11, 805.	5.1	13
173	Modeling of kinetics for the enzymatic hydrolysis of sunflower oil in a high-pressure reactor. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 543-547.	1.9	12
174	Supercritical fluids applied to the sol–gel process for preparation of AEROMOSILS/palladium particle nanocomposite catalyst. Journal of Supercritical Fluids, 2008, 46, 178-184.	3.2	12
175	Hydrolase-catalyzed reactions in membrane reactors at atmospheric and high pressure. Desalination, 2009, 241, 14-21.	8.2	12
176	The Influence of Supercritical Carbon Dioxide on Graham Flour Enzyme Polyphenol Oxidase Activity. Molecules, 2020, 25, 5981.	3.8	12
177	An Improved Reversed-Phase High-Performance Liquid Chromatography Method for the Analysis of Related Substances of Prednisolone in Active Ingredient. ACS Omega, 2020, 5, 7987-8000.	3.5	12
178	Enzymatic and Antimicrobial Activity of Biologically Active Samples from Aloe arborescens and Aloe barbadensis. Biology, 2021, 10, 765.	2.8	12
179	Enzyme Immobilization Onto Biochar Produced by the Hydrothermal Carbonization of Biomass. Acta Chimica Slovenica, 2019, 66, 732-739.	0.6	12
180	Extracts of White and Red Grape Skin and Rosehip Fruit: Phenolic Compounds and their Antioxidative Activity. Acta Chimica Slovenica, 0, , 751-761.	0.6	12

#	Article	IF	Citations
181	Physicochemical characterization and bioactive compounds of stalk from hot fruits of Capsicum annuum L Macedonian Journal of Chemistry and Chemical Engineering, 2016, 35, 199.	0.6	12
182	Salt induces biosynthesis of hemolytically active compounds in the xerotolerant food-borne fungus Wallemia sebi. FEMS Microbiology Letters, 2012, 326, 40-46.	1.8	11
183	Diffusion coefficients of water and propylene glycol in supercritical CO2 from pendant drop tensiometry. Journal of Supercritical Fluids, 2018, 133, 1-8.	3.2	11
184	Subcritical Water Extraction of Chestnut Bark and Optimization of Process Parameters. Molecules, 2020, 25, 2774.	3.8	11
185	Solubility and Diffusivity of CO ₂ in Natural Methyl Cellulose and Sodium Carboxymethyl Cellulose. Journal of Chemical & Data, 2011, 56, 4040-4044.	1.9	10
186	Phase equilibria of free fatty acids enriched vegetable oils and carbon dioxide: Experimental data, distribution coefficients and separation factors. Journal of Supercritical Fluids, 2014, 87, 65-72.	3.2	10
187	Effect of addition of supercritical CO2 on transfer and thermodynamic properties of biodegradable polymers PEG 600 and Brij52. Journal of Supercritical Fluids, 2017, 122, 10-17.	3.2	10
188	Supercritical fluid extraction from Saw Palmetto berries at a pressure range between 300bar and 450bar. Journal of Supercritical Fluids, 2017, 120, 132-139.	3.2	10
189	Optimization of Extraction of Phenolic Compounds with Antimicrobial Properties from Origanum vulgare. Processes, 2021, 9, 1032.	2.8	10
190	Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. Horticulturae, 2022, 8, 368.	2.8	10
191	Phase Equilibria of Glycerol Tristearate and Glycerol Trioleate in Carbon Dioxide and Sulfur Hexafluoride. Journal of Chemical & Engineering Data, 2012, 57, 3604-3610.	1.9	9
192	Different preparation methods and characterization of magnetic maghemite coated with chitosan. Journal of Nanoparticle Research, 2013, 15 , 1 .	1.9	9
193	Investigation of interfacial tension of the binary system polyethylene glycol/CO2 by a capillary rise method. Journal of Supercritical Fluids, 2015, 102, 9-16.	3.2	9
194	Separation of xanthohumol from hop extracts by supercritical fluid chromatography. Chemical Engineering Research and Design, 2016, 109, 335-345.	5.6	9
195	Toxicity of magnetic chitosan micro and nanoparticles as carriers for biologically active substances. Acta Chimica Slovenica, 2014, 61, 145-52.	0.6	9
196	Phase equilibria of binary mixture of carbon monoxide and water at elevated temperatures and pressures. Chemical Engineering Science, 2013, 99, 77-80.	3.8	8
197	Solubility of \hat{I}^2 -Carotene and Glyceryl Trioleate Mixture in Supercritical CO $<$ sub $>2<$ /sub $>$. Journal of Chemical & Engineering Data, 2014, 59, 653-658.	1.9	8
198	Argon as a potential processing media for natural and synthetic substances. Journal of Supercritical Fluids, 2014, 95, 252-257.	3.2	8

#	Article	IF	CITATIONS
199	Micro―and Nanocarriers for Immobilization of Enzymes. , 0, , .		8
200	Evaluation of the impact of critical quality attributes and critical process parameters on quality and stability of parenteral nutrition nanoemulsions. Journal of Drug Delivery Science and Technology, 2017, 39, 341-347.	3.0	8
201	Density, interfacial tension, and viscosity of polyethylene glycol 6000 and supercritical CO2. Journal of Supercritical Fluids, 2018, 139, 72-79.	3.2	8
202	Transglutaminase release and activity from novel poly ($\hat{l}\mu$ -caprolactone)-based composites prepared by foaming with supercritical CO2. Journal of Supercritical Fluids, 2020, 166, 105031.	3.2	8
203	Sequence of supercritical CO2 extraction and subcritical H2O extraction for the separation of tobacco waste into lipophilic and hydrophilic fractions. Chemical Engineering Research and Design, 2021, 169, 103-115.	5.6	8
204	Influence of the Impregnation Technique on the Release of Esomeprazole from Various Bioaerogels. Polymers, 2021, 13, 1882.	4.5	8
205	The Synthesis of (Magnetic) Crosslinked Enzyme Aggregates With Laccase, Cellulase, Î ² -Galactosidase and Transglutaminase. Frontiers in Bioengineering and Biotechnology, 2022, 10, 813919.	4.1	8
206	Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products. Processes, 2022, 10, 24.	2.8	8
207	High Pressure Micronization of Tristearate. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 119-125.	1.9	7
208	Alcohol dehydrogenase in nonâ€aqueous media using highâ€pressure technologies: reaction setâ€up and deactivation determination. Journal of Chemical Technology and Biotechnology, 2010, 85, 1011-1016.	3.2	7
209	Observation of Phase Behavior for Bio-oil + Diesel + Carbon Dioxide and Bio-oil + Tail Water + Carbon Dioxide System. Journal of Chemical & Engineering Data, 2013, 58, 648-652.	1.9	7
210	Biological activities of organic extracts of four <i>Aureobasidium pullulans</i> varieties isolated from extreme marine and terrestrial habitats. Natural Product Research, 2014, 28, 874-882.	1.8	7
211	The effects of different solvents on bioactive metabolites and "in vitro―antioxidant and anti-acetylcholinesterase activity of Ganoderma lucidum fruiting body and primordia extracts. Macedonian Journal of Chemistry and Chemical Engineering, 2017, 36, .	0.6	7
212	The Effect of Drying Methods and Extraction Techniques on Oleuropein Content in Olive Leaves. Plants, 2022, 11, 865.	3.5	7
213	Preparation of BaTiO3 powders using supercritical CO2 drying of gels. Journal of Non-Crystalline Solids, 2001, 285, 44-49.	3.1	6
214	Thermodynamic properties of the enzymatic hydrolysis of sunflower oil in high-pressure reactors. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 785-788.	1.9	6
215	Phase Equilibria of Permethrin and Dicofol with Carbon Dioxide. Journal of Chemical & Dicord & Phase Equilibria of Permethrin and Dicord with Carbon Dioxide. Journal of Chemical & Dicord & Dicord & Phase Equilibria of Permethrin and Dicord with Carbon Dioxide. Journal of Chemical & Dicord &	1.9	6
216	Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biology, 2015, 38, 1605-1612.	1.2	6

#	Article	lF	CITATIONS
217	In Vitro Degradation of Poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -glycolide) Foams Processed with Supercritical Fluids. Industrial & Engineering Chemistry Research, 2015, 54, 2114-2119.	3.7	6
218	A synergistic interaction of $17 \cdot \hat{l}^2$ -estradiol with specific cannabinoid receptor type 2 antagonist/inverse agonist on proliferation activity in primary human osteoblasts. Biomedical Reports, 2015, 3, 554-558.	2.0	6
219	Thermodynamic Data for Processing Naphthol with Supercritical Carbon Dioxide. Journal of Chemical & Lamp; Engineering Data, 2017, 62, 1223-1231.	1.9	6
220	The effect of argon contamination on interfacial tension, diffusion coefficients and storage capacity in carbon sequestration processes. International Journal of Greenhouse Gas Control, 2018, 71, 142-154.	4.6	6
221	Subcritical water extraction of horse chestnut (Aesculus hippocastanum) tree parts. Journal of the Serbian Chemical Society, 2021, 86, 603-613.	0.8	6
222	Protein Release from Biodegradable Poly($\hat{l}\mu$ -Caprolactone)-Chitosan Scaffolds Prepared in scCO2. Acta Chimica Slovenica, 2019, 66, 337-343.	0.6	6
223	Particle formation using supercritical fluids: A short review. Chemical Industry and Chemical Engineering Quarterly, 2006, 12, 141-146.	0.7	6
224	CONCENTRATING THE CHLOROPHYLLS IN EXTRACT BY PRETREATMENT OF STINGING NETTLE LEAVES WITH NONPOLAR ORGANIC SOLVENTS AND SUPERCRITICAL CARBON DIOXIDE. Journal of Food Process Engineering, 2007, 30, 701-716.	2.9	5
225	Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts. Frontiers in Bioengineering and Biotechnology, 2016, 4, 33.	4.1	5
226	Food Processing Using Supercritical Fluids. Food Engineering Series, 2016, , 413-442.	0.7	5
227	Polyolefin/ZnO Composites Prepared by Melt Processing. Molecules, 2019, 24, 2432.	3.8	5
228	Effect of Hydrolyzable Tannins on Glucose-Transporter Expression and Their Bioavailability in Pig Small-Intestinal 3D Cell Model. Molecules, 2021, 26, 345.	3.8	5
229	Enzymatic Reactions in Supercritical Fluids. Food Engineering Series, 2015, , 185-215.	0.7	5
230	Accelerated atherosclerosis in premenopausal women with rheumatoid arthritis – 15-year follow-up. Bosnian Journal of Basic Medical Sciences, 2021, 21, 477-483.	1.0	5
231	Extraction of Lutein Diesters from Tagetes Erecta using Supercritical CO2 and Liquid Propane. Acta Chimica Slovenica, 2010, 57, 60-5.	0.6	5
232	Arnica Montana L. Supercritical Extraction Optimization for Antibiotic and Anticancer Activity. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	5
233	Simple, One-Pot Method for Preparing Transparent Ethyl Cellulose Films with Good Mechanical Properties. Polymers, 2022, 14, 2399.	4.5	5
234	Mathematical modelling of phase equilibria for supercritical CO2 and polyethylene glycol of various molecular weights. Journal of Supercritical Fluids, 2014, 95, 635-640.	3.2	4

#	Article	IF	CITATIONS
235	HPLC–MS/MS method optimisation for matrix metalloproteinase 3 and matrix metalloproteinase 9 determination in human blood serum using target analysis. Journal of Pharmaceutical and Biomedical Analysis, 2018, 150, 137-143.	2.8	4
236	The Effect of Polyphenolics in Extracts from Natural Materials on Metabolic Activity of Metastatic Melanoma WM-266-4 Cells. Applied Sciences (Switzerland), 2020, 10, 3499.	2.5	4
237	Phase Equilibrium Data of Tetrabutylurea, Tetramethylurea, and Tetramethylthiourea/Carbon Dioxide at Pressures up to 200 bar at 313.15 and 333.15 K. Journal of Chemical & Engineering Data, 2022, 67, 2378-2383.	1.9	4
238	Isolation of Proanthocyanidins from Different Natural Sources. Chemie-Ingenieur-Technik, 2001, 73, 731-731.	0.8	3
239	Fitting Sovova's mass transfer model using an evolutionary algorithm and differential evolution. International Journal of Innovative Computing and Applications, 2010, 2, 237.	0.2	3
240	The Phase Structure of Novel Polycarbonate-Based Polyurethane-Organoclay Nanocomposites. Advanced Materials Research, 0, 560-561, 771-775.	0.3	3
241	A new high-pressure micronisation process for the gentle processing of high molecular mass gelatine. Food and Bioproducts Processing, 2012, 90, 79-86.	3.6	3
242	Thermodynamic data for processing polyethylene glycol with non-conventional fluids. Journal of Supercritical Fluids, 2016, 118, 39-47.	3.2	3
243	The Influence of Extracts from Common Houseleek (Sempervivum tectorum) on the Metabolic Activity of Human Melanoma Cells WM-266-4. Processes, 2021, 9, 1549.	2.8	3
244	Extracts of White and Red Grape Skin and Rosehip Fruit: Phenolic Compounds and their Antioxidative Activity. Acta Chimica Slovenica, 2019, 66, 751-761.	0.6	3
245	Separation of Amino Acids and Peptides with Supercritical Fluids Chromatography. Separation and Purification Reviews, 2023, 52, 58-74.	5.5	3
246	Evaluation of Natural Extracts as Promising Components of Bioactive Coatings for Orthopedic Implants. Frontiers in Materials, 2022, 9, .	2.4	3
247	Optimisation of the Green Process of Industrial Hempâ€"Preparation and Its Extract Characterisation. Plants, 2022, 11, 1749.	3.5	3
248	Phase equilibria of the binary systems of fenofibrate and dense gases (carbon dioxide, propane,) Tj ETQq0 0 0 rg	BT <u>/O</u> verlo	ck 10 Tf 50 22
249	Release of Halophilic Extremozymes by Mechanical Cell Disruption. Acta Chimica Slovenica, 0, , 217-228.	0.6	2
250	CHAPTER 12. Incorporation of Drugs and Metals into Aerogels Using Supercritical Fluids. RSC Green Chemistry, 2018, , 374-394.	0.1	1
251	Supercritical Fluids as a Tool for Green Energy and Chemicals. Advances in Chemical and Materials Engineering Book Series, 2017, , 554-587.	0.3	1
252	Supercritical Fluids as a Tool for Green Energy and Chemicals. , 2020, , 1105-1137.		1

#	Article	IF	Citations
253	Production of biogas by SCF technology. Chemical Industry and Chemical Engineering Quarterly, 2016, 22, 333-342.	0.7	1
254	Investigation of the thermodynamic properties of the binary system vitamin K3/carbon dioxide. Chemical Industry and Chemical Engineering Quarterly, 2017, 23, 563-571.	0.7	1
255	Accelerated atherosclerosis in premenopausal women with rheumatoid arthritis - 15-year follow-up. Bosnian Journal of Basic Medical Sciences, 2021, 21, 477-483.	1.0	1
256	Supercritical fluid chromatography and scale up study. Acta Chimica Slovenica, 2014, 61, 746-58.	0.6	1
257	Effect of Ascorbic Acid on Cardiac Surgery-Associated Acute Kidney Injury Incidence. Thoracic and Cardiovascular Surgeon, 0, , .	1.0	1
258	Enzyme Activity and Physiochemical Properties of Flour after Supercritical Carbon Dioxide Processing. Foods, 2022, 11, 1826.	4.3	1
259	Various Applications of Aerogels Prepared by Supercritical Drying with CO2. Chemie-Ingenieur-Technik, 2001, 73, 690-690.	0.8	0
260	The Use of Supercritical Fluids as Alternative Solvents. Chemie-Ingenieur-Technik, 2001, 73, 691-691.	0.8	0
261	Microbial Cellulase Applications in Algal Research. , 2016, , 257-266.		O
262	Supercritical Fluids as a Tool for Green Energy and Chemicals. Advances in Chemical and Materials Engineering Book Series, 2021, , 761-791.	0.3	0
263	Low Energy Processing of Polymeric Materials. , 0, , .		0
264	Chemical Reactions in Subcritical and Supercritical Fluids., 2018,, 1-21.		0
265	Chemical Reactions in Subcritical Supercritical Fluids. , 2019, , 111-131.		0
266	Enzyme Deactivation Using High Pressure Carbon Dioxide Technology. , 0, , .		0
267	Use of Supercritical Water for Degradation of Polyethylene Waste. , 0, , .		0
268	Chapter 4. Enzyme-based Biomass Catalyzed Reactions in Supercritical CO2. RSC Green Chemistry, 0, , 66-82.	0.1	0
269	Activity of αAmylase from P. ostreatus Grown on Waste Substrates. , 0, , .		0