Guiyun Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801715/publications.pdf

Version: 2024-02-01

28274 51608 10,639 230 55 citations h-index papers

86 g-index 239 239 239 7976 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emerging Mosquito Resistance to Piperonyl Butoxide-Synergized Pyrethroid Insecticide and Its Mechanism. Journal of Medical Entomology, 2022, 59, 638-647.	1.8	3
2	Evidence of pyrethroid resistance in Anopheles amharicus and Anopheles arabiensis from Arjo-Didessa irrigation scheme, Ethiopia. PLoS ONE, 2022, 17, e0261713.	2.5	7
3	Burden of malaria, impact of interventions and climate variability in Western Ethiopia: an area with large irrigation based farming. BMC Public Health, 2022, 22, 196.	2.9	14
4	Behavioral responses of pyrethroid resistant and susceptible Anopheles gambiae mosquitoes to insecticide treated bed net. PLoS ONE, 2022, 17, e0266420.	2.5	6
5	Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya. PLoS ONE, 2022, 17, e0266394.	2.5	2
6	Interspecific mating bias may drive <i>Aedes albopictus</i> displacement of <i>Aedes aegypti</i> during its range expansion., 2022, 1, .		7
7	Community structure and insecticide resistance of malaria vectors in northern-central Myanmar. Parasites and Vectors, 2022, 15, 155.	2.5	9
8	Risk associations of submicroscopic malaria infection in lakeshore, plateau and highland areas of Kisumu County in western Kenya. PLoS ONE, 2022, 17, e0268463.	2.5	7
9	Impact of Agricultural Irrigation on Anemia in Western Kenya. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	1
10	Widespread multiple insecticide resistance in the major dengue vector <scp><i>Aedes albopictus</i></scp> in Hainan Province, China. Pest Management Science, 2021, 77, 1945-1953.	3.4	17
11	Microgeographic Epidemiology of Malaria Parasites in an Irrigated Area of Western Kenya by Deep Amplicon Sequencing. Journal of Infectious Diseases, 2021, 223, 1456-1465.	4.0	4
12	Increased investment in gametocytes in asymptomatic Plasmodium falciparum infections in the wet season. BMC Infectious Diseases, 2021, 21, 44.	2.9	16
13	<i>Plasmodium vivax</i> From Duffy-Negative and Duffy-Positive Individuals Share Similar Gene Pools in East Africa. Journal of Infectious Diseases, 2021, 224, 1422-1431.	4.0	11
14	Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS ONE, 2021, 16, e0240771.	2.5	12
15	Survivorship of Anopheles gambiae sensu lato in irrigated sugarcane plantation scheme in Ethiopia. Parasites and Vectors, 2021, 14, 142.	2.5	4
16	Patterns of human exposure to early evening and outdoor biting mosquitoes and residual malaria transmission in Ethiopia. Acta Tropica, 2021, 216, 105837.	2.0	27
17	Multi-Indicator and Multistep Assessment of Malaria Transmission Risks in Western Kenya. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1359-1370.	1.4	6
18	Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Neglected Tropical Diseases, 2021, 15, e0009391.	3.0	24

#	Article	IF	CITATIONS
19	Predicting distribution of malaria vector larval habitats in Ethiopia by integrating distributed hydrologic modeling with remotely sensed data. Scientific Reports, 2021, 11, 10150.	3.3	6
20	The impact of large and small dams on malaria transmission in four basins in Africa. Scientific Reports, 2021, 11, 13355.	3.3	11
21	Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Scientific Reports, 2021, 11, 12667.	3.3	5
22	Insecticide resistance exerts significant fitness costs in immature stages of Anopheles gambiae in western Kenya. Malaria Journal, 2021, 20, 259.	2.3	15
23	Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasites and Vectors, 2021, 14, 335.	2.5	19
24	Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: implications for residual transmission. BMC Infectious Diseases, 2021, 21, 882.	2.9	8
25	An Adaptive Intervention Trial Design for Finding the Optimal Integrated Strategies for Malaria Control and Elimination in Africa: A Model Simulation Study. American Journal of Tropical Medicine and Hygiene, 2021, , .	1.4	2
26	Unraveling the Complexity of Imported Malaria Infections by Amplicon Deep Sequencing. Frontiers in Cellular and Infection Microbiology, 2021, 11, 725859.	3.9	4
27	The effect of irrigation on malaria vector bionomics and transmission intensity in western Ethiopia. Parasites and Vectors, 2021, 14, 516.	2.5	16
28	Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLoS ONE, 2021, 16, e0255321.	2.5	18
29	Rethinking the economic costs of hospitalization for malaria: accounting for the comorbidities of malaria patients in western Kenya. Malaria Journal, 2021, 20, 429.	2.3	6
30	Genetic diversity and population structure of the human malaria parasite Plasmodium falciparum surface protein Pfs47 in isolates from the lowlands in Western Kenya. PLoS ONE, 2021, 16, e0260434.	2.5	6
31	Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Neglected Tropical Diseases, 2020, 14, e0008234.	3.0	25
32	Ecological drivers of genetic connectivity for African malaria vectors Anopheles gambiae and Anarabiensis. Scientific Reports, 2020, 10, 19946.	3.3	11
33	Long-lasting microbial larvicides for controlling insecticide resistant and outdoor transmitting vectors: a cost-effective supplement for malaria interventions. Infectious Diseases of Poverty, 2020, 9, 162.	3.7	8
34	Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Scientific Reports, 2020, 10, 19063.	3.3	31
35	Adaptive interventions for optimizing malaria control: an implementation study protocol for a block-cluster randomized, sequential multiple assignment trial. Trials, 2020, 21, 665.	1.6	8
36	Impact of sugarcane irrigation on malaria vector Anopheles mosquito fauna, abundance and seasonality in Arjo-Didessa, Ethiopia. Malaria Journal, 2020, 19, 344.	2.3	29

#	Article	IF	Citations
37	Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Scientific Reports, 2020, 10, 16139.	3.3	24
38	Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China. Parasites and Vectors, 2020, 13, 444.	2.5	16
39	Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Malaria Journal, 2020, 19, 174.	2.3	19
40	Genomic Variant Analyses in Pyrethroid Resistant and Susceptible Malaria Vector, <i>Anopheles sinensis</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2185-2193.	1.8	4
41	Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS ONE, 2020, 15, e0224718.	2.5	30
42	Effects of environmental modification on the diversity and positivity of anopheline mosquito aquatic habitats at Arjo-Dedessa irrigation development site, Southwest Ethiopia. Infectious Diseases of Poverty, 2020, 9, 9.	3.7	29
43	Vertical transmission of zika virus in Aedes albopictus. PLoS Neglected Tropical Diseases, 2020, 14, e0008776.	3.0	20
44	Gaps between Knowledge and Malaria Treatment Practices after Intensive Anti-Malaria Campaigns in Western Kenya: 2004–2016. American Journal of Tropical Medicine and Hygiene, 2020, 102, 1358-1365.	1.4	6
45	Behavioral response of insecticide-resistant mosquitoes against spatial repellent: A modified self-propelled particle model simulation. PLoS ONE, 2020, 15, e0244447.	2.5	4
46	Title is missing!. , 2020, 14, e0008234.		0
47	Title is missing!. , 2020, 14, e0008234.		0
48	Title is missing!. , 2020, 14, e0008234.		0
49	Title is missing!. , 2020, 14, e0008234.		0
50	Title is missing!. , 2020, 15, e0224718.		0
51	Title is missing!. , 2020, 15, e0224718.		0
52	Title is missing!. , 2020, 15, e0224718.		0
53	Title is missing!. , 2020, 15, e0224718.		0
54	Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasites and Vectors, 2019, 12, 382.	2.5	21

#	Article	IF	Citations
55	Epidemiological risk factors for clinical malaria infection in the highlands of Western Kenya. Malaria Journal, 2019, 18, 211.	2.3	28
56	Prevalence and distribution of G6PD deficiency: implication for the use of primaquine in malaria treatment in Ethiopia. Malaria Journal, 2019, 18, 340.	2.3	13
57	Malaria around large dams in Africa: effect of environmental and transmission endemicity factors. Malaria Journal, 2019, 18, 303.	2.3	15
58	Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance. PLoS Neglected Tropical Diseases, 2019, 13, e0007222.	3.0	25
59	Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: Alarm to the dengue epidemic. PLoS Neglected Tropical Diseases, 2019, 13, e0007665.	3.0	39
60	Insecticide Resistance Status and Mechanisms of Anopheles sinensis (Diptera: Culicidae) in Wenzhou, an Important Coastal Port City in China. Journal of Medical Entomology, 2019, 56, 803-810.	1.8	6
61	Evaluation of the performance of new sticky pots for outdoor resting malaria vector surveillance in western Kenya. Parasites and Vectors, 2019, 12, 278.	2.5	17
62	Influence of blood meal and age of mosquitoes on susceptibility to pyrethroids in Anopheles gambiae from Western Kenya. Malaria Journal, 2019, 18, 112.	2.3	29
63	Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study. Malaria Journal, 2019, 18, 145.	2.3	25
64	Trends in insecticide resistance in Culex pipiens pallens over 20Âyears in Shandong, China. Parasites and Vectors, 2019, 12, 167.	2.5	22
65	Odorant ligands for the CO2 receptor in two Anopheles vectors of malaria. Scientific Reports, 2019, 9, 2549.	3.3	12
66	Antiviral systems in vector mosquitoes. Developmental and Comparative Immunology, 2018, 83, 34-43.	2.3	13
67	Reactive case detection of Plasmodium falciparum in western Kenya highlands: effective in identifying additional cases, yet limited effect on transmission. Malaria Journal, 2018, 17, 111.	2.3	18
68	Plasmodium Gametocytes in Field Studies: Do We Measure Commitment to Transmission or Detectability?. Trends in Parasitology, 2018, 34, 378-387.	3.3	38
69	Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Neglected Tropical Diseases, 2018, 12, e0006828.	3.0	20
70	Detection of foci of residual malaria transmission through reactive case detection in Ethiopia. Malaria Journal, 2018, 17, 390.	2.3	19
71	Efficacy and persistence of long-lasting microbial larvicides against malaria vectors in western Kenya highlands. Parasites and Vectors, 2018, 11, 438.	2.5	24
72	The current malaria morbidity and mortality in different transmission settings in Western Kenya. PLoS ONE, 2018, 13, e0202031.	2.5	37

#	Article	IF	CITATIONS
73	Bacterial microbiota assemblage in <i>Aedes albopictus</i> mosquitoes and its impacts on larval development. Molecular Ecology, 2018, 27, 2972-2985.	3.9	78
74	Complex Determination of the Gametocyte Conversion Rate. Trends in Parasitology, 2018, 34, 634-635.	3.3	1
75	Molecular approaches to determine the multiplicity of Plasmodium infections. Malaria Journal, 2018, 17, 172.	2.3	42
76	Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malaria Journal, 2018, 17, 185.	2.3	30
77	Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasites and Vectors, $2018,11,4.$	2.5	62
78	Utility of passive malaria surveillance in hospitals as a surrogate to community infection transmission dynamics in western Kenya. Archives of Public Health, 2018, 76, 39.	2.4	12
79	Microbial larvicides for mosquito control: Impact of long lasting formulations of ⟨i>Bacillus thuringiensis⟨i> var. ⟨i>israelensis⟨i> and ⟨i>Bacillus sphaericus⟨i> on nonâ€target organisms in western Kenya highlands. Ecology and Evolution, 2018, 8, 7563-7573.	1.9	45
80	Emerging Pyrethroid Resistance among Anopheles arabiensis in Kenya. American Journal of Tropical Medicine and Hygiene, 2018, 98, 704-709.	1.4	15
81	Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003–2015. American Journal of Tropical Medicine and Hygiene, 2018, 98, 692-699.	1.4	39
82	Frequent Spread of Plasmodium vivax Malaria Maintains High Genetic Diversity at the Myanmar-China Border, Without Distance and Landscape Barriers. Journal of Infectious Diseases, 2017, 216, 1254-1263.	4.0	32
83	Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malaria Journal, 2017, 16, 443.	2.3	92
84	Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Neglected Tropical Diseases, 2017, 11, e0005806.	3.0	57
85	Age-specific Plasmodium parasite profile in pre and post ITN intervention period at a highland site in western Kenya. Malaria Journal, 2017, 16, 466.	2.3	5
86	Why some sites are responding better to anti-malarial interventions? A case study from western Kenya. Malaria Journal, 2017, 16, 498.	2.3	15
87	Competence of <i>Aedes aegypti</i> , <i>Ae. albopictus</i> , and <i>Culex quinquefasciatus</i> Mosquitoes as Zika Virus Vectors, China. Emerging Infectious Diseases, 2017, 23, 1085-1091.	4.3	95
88	<i>Plasmodium malariae</i> Prevalence and <i>csp</i> Gene Diversity, Kenya, 2014 and 2015. Emerging Infectious Diseases, 2017, 23, 601-610.	4.3	34
89	Microgeographic Heterogeneity of Border Malaria During Elimination Phase, Yunnan Province, China, 2011–2013. Emerging Infectious Diseases, 2016, 22, 1363-1370.	4.3	13
90	Common asymptomatic and submicroscopic malaria infections in Western Thailand revealed in longitudinal molecular and serological studies: a challenge to malaria elimination. Malaria Journal, 2016, 15, 333.	2.3	70

#	Article	IF	Citations
91	Impact of interventions on malaria in internally displaced persons along the China–Myanmar border: 2011–2014. Malaria Journal, 2016, 15, 471.	2.3	34
92	The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: study protocol for a cluster randomized controlled trial. Trials, 2016, 17, 423.	1.6	14
93	Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasites and Vectors, 2016, 9, 446.	2.5	64
94	Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus. PLoS Neglected Tropical Diseases, 2016, 10, e0004696.	3.0	72
95	Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region. PLoS ONE, 2016, 11, e0155301.	2.5	23
96	Insecticide-Treated Net Campaign and Malaria Transmission in Western Kenya: 2003–2015. Frontiers in Public Health, 2016, 4, 153.	2.7	27
97	A neural network prediction of environmental determinants of <i>Anopheles sinensis </i> knockdown resistance mutation to pyrethroids in China. Journal of Vector Ecology, 2016, 41, 295-302.	1.0	2
98	Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malaria Journal, 2016, 15, 577.	2.3	49
99	Role of <i>Plasmodium vivax</i> Duffy-binding protein 1 in invasion of Duffy-null Africans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6271-6276.	7.1	87
100	Microgeographically diverse Plasmodium vivax populations at the Thai-Myanmar border. Infection, Genetics and Evolution, 2016, 45, 341-346.	2.3	3
101	Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasites and Vectors, 2016, 9, 323.	2.5	18
102	Analysis of Pvama1 genes from China-Myanmar border reveals little regional genetic differentiation of Plasmodium vivax populations. Parasites and Vectors, 2016, 9, 614.	2.5	13
103	Examining Plasmodium falciparum and P. vivax clearance subsequent to antimalarial drug treatment in the Myanmar-China border area based on quantitative real-time polymerase chain reaction. BMC Infectious Diseases, 2016, 16, 154.	2.9	14
104	Discovering the cost of care: consumer, provider, and retailer surveys shed light on the determinants of malaria health-seeking behaviours. Malaria Journal, 2016, 15, 179.	2.3	16
105	Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis. Parasites and Vectors, 2016, 9, 228.	2.5	40
106	Analysis of asymptomatic and clinical malaria in urban and suburban settings of southwestern Ethiopia in the context of sustaining malaria control and approaching elimination. Malaria Journal, 2016, 15, 250.	2.3	22
107	Natural human Plasmodium infections in major Anopheles mosquitoes in western Thailand. Parasites and Vectors, 2016, 9, 17.	2.5	54
108	Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China–Myanmar border area. Infection, Genetics and Evolution, 2016, 39, 155-162.	2.3	20

#	Article	IF	CITATIONS
109	Seasonal dynamics and microgeographical spatial heterogeneity of malaria along the China–Myanmar border. Acta Tropica, 2016, 157, 12-19.	2.0	29
110	Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications. PLoS Neglected Tropical Diseases, 2016, 10, e0005091.	3.0	48
111	Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS ONE, 2016, 11, e0151900.	2.5	22
112	Evaluation of CDC light traps for mosquito surveillance in a malaria endemic area on the Thai-Myanmar border. Parasites and Vectors, 2015, 8, 636.	2.5	58
113	Microgeography and molecular epidemiology of malaria at the Thailand-Myanmar border in the malaria pre-elimination phase. Malaria Journal, 2015, 14, 198.	2.3	47
114	Surveillance of malaria vector population density and biting behaviour in western Kenya. Malaria Journal, 2015, 14, 244.	2.3	74
115	Population dynamics and community structure of Anopheles mosquitoes along the China-Myanmar border. Parasites and Vectors, 2015, 8, 445.	2.5	27
116	Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya. Parasites and Vectors, 2015, 8, 588.	2.5	35
117	Pyrethroid and DDT Resistance and Organophosphate Susceptibility among <i>Anopheles </i> spp. Mosquitoes, Western Kenya. Emerging Infectious Diseases, 2015, 21, 2178-2181.	4.3	56
118	Low Parasitemia in Submicroscopic Infections Significantly Impacts Malaria Diagnostic Sensitivity in the Highlands of Western Kenya. PLoS ONE, 2015, 10, e0121763.	2.5	60
119	Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS ONE, 2015, 10, e0135396.	2.5	13
120	Constructing a Genome-Wide LD Map of Wild <i>A. gambiae</i> BioMed Research International, 2015, 2015, 1-8.	1.9	2
121	Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity. Parasites and Vectors, 2015, 8, 251.	2.5	13
122	Clinical Efficacy of Dihydroartemisinin–Piperaquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria at the China–Myanmar Border. American Journal of Tropical Medicine and Hygiene, 2015, 93, 577-583.	1.4	29
123	Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar–China border area. Infection, Genetics and Evolution, 2015, 33, 189-196.	2.3	20
124	Active case surveillance, passive case surveillance and asymptomatic malaria parasite screening illustrate different age distribution, spatial clustering and seasonality in western Kenya. Malaria Journal, 2015, 14, 41.	2.3	43
125	Molecular epidemiology of Plasmodium vivax and Plasmodium falciparum malaria among Duffy-positive and Duffy-negative populations in Ethiopia. Malaria Journal, 2015, 14, 84.	2.3	51
126	Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malaria Journal, 2015, 14, 95.	2.3	82

#	Article	IF	CITATIONS
127	Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i> , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15.	7.1	251
128	RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs. Parasites and Vectors, 2015, 8, 474.	2.5	35
129	Insecticide Resistance in Areas Under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination. American Journal of Tropical Medicine and Hygiene, 2015, 93, 69-78.	1.4	38
130	Genetic diversity of Plasmodium falciparum histidine-rich protein 2 in the China–Myanmar border area. Acta Tropica, 2015, 152, 26-31.	2.0	49
131	Therapeutic Responses of Plasmodium vivax Malaria to Chloroquine and Primaquine Treatment in Northeastern Myanmar. Antimicrobial Agents and Chemotherapy, 2015, 59, 1230-1235.	3.2	48
132	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles </i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
133	Development of Resistance to Pyrethroid in Culex pipiens pallens Population under Different Insecticide Selection Pressures. PLoS Neglected Tropical Diseases, 2015, 9, e0003928.	3.0	37
134	Identification of QTLs Conferring Resistance to Deltamethrin in Culex pipiens pallens. PLoS ONE, 2015, 10, e0140923.	2.5	7
135	Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anophelesspp. Mosquitoes, Western Kenya. Emerging Infectious Diseases, 2015, 21, .	4.3	2
136	Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malaria Journal, 2014, 13, 351.	2.3	44
137	Multiple Resistances and Complex Mechanisms of Anopheles sinensis Mosquito: A Major Obstacle to Mosquito-Borne Diseases Control and Elimination in China. PLoS Neglected Tropical Diseases, 2014, 8, e2889.	3.0	64
138	Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship. PLoS Neglected Tropical Diseases, 2014, 8, e3301.	3.0	293
139	Spatiotemporal Characterizations of Dengue Virus in Mainland China: Insights into the Whole Genome from 1978 to 2011. PLoS ONE, 2014, 9, e87630.	2.5	16
140	Clinical Malaria along the China–Myanmar Border, Yunnan Province, China, January 2011–August 2012. Emerging Infectious Diseases, 2014, 20, 681-684.	4.3	29
141	Anopheles sinensis mosquito insecticide resistance: comparison of three mosquito sample collection and preparation methods and mosquito age in resistance measurements. Parasites and Vectors, 2014, 7, 54.	2.5	21
142	Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Parasites and Vectors, 2014, 7, 92.	2.5	34
143	Transcriptome profiling of pyrethroid resistant and susceptible mosquitoes in the malaria vector, Anopheles sinensis. BMC Genomics, 2014, 15, 448.	2.8	42
144	Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys. Malaria Journal, 2014, 13, 175.	2.3	55

#	Article	IF	Citations
145	Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area. Malaria Journal, 2013, 12, 73.	2.3	34
146	Modest additive effects of integrated vector control measures on malaria prevalence and transmission in western Kenya. Malaria Journal, 2013, 12, 256.	2.3	20
147	The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malaria Journal, 2013, 12, 368.	2.3	90
148	Risk factors associated with slide positivity among febrile patients in a conflict zone of north-eastern Myanmar along the China-Myanmar border. Malaria Journal, 2013, 12, 361.	2.3	35
149	The Anopheles community and the role of Anopheles minimus on malaria transmission on the China-Myanmar border. Parasites and Vectors, 2013, 6, 264.	2.5	37
150	Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen. Parasites and Vectors, 2013, 6, 353.	2.5	13
151	Fine-Scale Analysis of Parasite Resistance Genes in the Red Flour Beetle, Tribolium castaneum. Genetics, 2013, 195, 253-261.	2.9	6
152	A first report of Anopheles funestus sibling species in western Kenya highlands. Acta Tropica, 2013, 128, 158-161.	2.0	23
153	Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci. Acta Tropica, 2013, 125, 53-59.	2.0	38
154	Validation of ELISA for Quantitation of Artemisinin-Based Antimalarial Drugs. American Journal of Tropical Medicine and Hygiene, 2013, 89, 1122-1128.	1.4	11
155	Utility of Health Facility-based Malaria Data for Malaria Surveillance. PLoS ONE, 2013, 8, e54305.	2.5	37
156	Relationship between Knockdown Resistance, Metabolic Detoxification and Organismal Resistance to Pyrethroids in Anopheles sinensis. PLoS ONE, 2013, 8, e55475.	2.5	61
157	Genetic Diversity and Lack of Artemisinin Selection Signature on the Plasmodium falciparum ATP6 in the Greater Mekong Subregion. PLoS ONE, 2013, 8, e59192.	2.5	11
158	Gene Expression-Based Biomarkers for Anopheles gambiae Age Grading. PLoS ONE, 2013, 8, e69439.	2.5	20
159	Protein Microarray Analysis of Antibody Responses to Plasmodium falciparum in Western Kenyan Highland Sites with Differing Transmission Levels. PLoS ONE, 2013, 8, e82246.	2.5	61
160	Genetic Analysis of Invasive Aedes albopictus Populations in Los Angeles County, California and Its Potential Public Health Impact. PLoS ONE, 2013, 8, e68586.	2.5	84
161	Comparative Transcriptome Analyses of Deltamethrin-Resistant and -Susceptible Anopheles gambiae Mosquitoes from Kenya by RNA-Seq. PLoS ONE, 2012, 7, e44607.	2.5	79
162	Malaria in the Greater Mekong Subregion: Heterogeneity and complexity. Acta Tropica, 2012, 121, 227-239.	2.0	219

#	Article	IF	Citations
163	Challenges and prospects for malaria elimination in the Greater Mekong Subregion. Acta Tropica, 2012, 121, 240-245.	2.0	42
164	Variation in exposure to Anopheles gambiae salivary gland peptide (gSG6-P1) across different malaria transmission settings in the western Kenya highlands. Malaria Journal, 2012, 11, 318.	2.3	40
165	Anopheline Larval Habitats Seasonality and Species Distribution: A Prerequisite for Effective Targeted Larval Habitats Control Programmes. PLoS ONE, 2012, 7, e52084.	2.5	73
166	The ecology of <i>Anopheles</i> mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Annals of the New York Academy of Sciences, 2012, 1249, 204-210.	3.8	96
167	Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infectious Diseases, 2012, 12, 50.	2.9	27
168	Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits. Parasites and Vectors, 2012, 5, 33.	2.5	30
169	Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya. Parasites and Vectors, 2011, 4, 113.	2.5	157
170	Analysing the generality of spatially predictive mosquito habitat models. Acta Tropica, 2011, 119, 30-37.	2.0	7
171	Changing Patterns of Malaria Epidemiology between 2002 and 2010 in Western Kenya: The Fall and Rise of Malaria. PLoS ONE, 2011, 6, e20318.	2.5	144
172	Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands. Parasites and Vectors, 2011, 4, 241.	2.5	52
173	Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands. Parasites and Vectors, 2011, 4, 110.	2.5	40
174	Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasites and Vectors, 2011, 4, 128.	2.5	68
175	Genetic diversity of Plasmodium vivax malaria in China and Myanmar. Infection, Genetics and Evolution, 2011, 11, 1419-1425.	2.3	28
176	Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. Journal of the Royal Society Interface, 2011, 8, 799-806.	3.4	59
177	Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya. PLoS ONE, 2011, 6, e24767.	2.5	469
178	Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes. PLoS ONE, 2010, 5, e11681.	2.5	80
179	Population structure of Anopheles gambiae along the Kenyan coast. Acta Tropica, 2010, 114, 103-108.	2.0	16
180	Community-wide benefits of targeted indoor residual spray for malaria control in the Western Kenya Highland. Malaria Journal, 2010, 9, 67.	2.3	59

#	Article	IF	Citations
181	Genome-Wide Patterns of Gene Expression during Aging in the African Malaria Vector Anopheles gambiae. PLoS ONE, 2010, 5, e13359.	2.5	31
182	Land Use and Land Cover Changes and Spatiotemporal Dynamics of Anopheline Larval Habitats during a Four-Year Period in a Highland Community of Africa. American Journal of Tropical Medicine and Hygiene, 2009, 81, 1079-1084.	1.4	61
183	Genetic structure of Plasmodium falciparum populations between lowland and highland sites and antimalarial drug resistance in Western Kenya. Infection, Genetics and Evolution, 2009, 9, 806-812.	2.3	47
184	Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malaria Journal, 2009, 8, 234.	2.3	38
185	Conspecific Sharing of Breeding Sites by Anopheline Female Mosquitoes (Diptera: Culicidae) Inferred from Microsatellite Markers. Journal of Insect Behavior, 2008, 21, 24-33.	0.7	10
186	Molecular epidemiology of drug-resistant malaria in western Kenya highlands. BMC Infectious Diseases, 2008, 8, 105.	2.9	30
187	Monooxygenase Levels and Knockdown Resistance (<i>kdr</i>) Allele Frequencies in <i>Anopheles gambiae</i> and <i>Anopheles arabiensis</i> in Kenya. Journal of Medical Entomology, 2008, 45, 242-250.	1.8	33
188	Deforestation and Vectorial Capacity of <i>Anopheles gambiae </i> Iransmission, Kenya. Emerging Infectious Diseases, 2008, 14, 1533-1538.	4.3	112
189	Survivorship of Immature Stages of (i>Anopheles gambiae >s.l. (Diptera: Culicidae) in Natural Habitats in Western Kenya Highlands. Journal of Medical Entomology, 2007, 44, 758-764.	1.8	42
190	Estimating Dispersal and Survival of <i>Anopheles gambiae</i> and <i>Anopheles funestus</i> Along the Kenyan Coast by Using Mark–Release–Recapture Methods. Journal of Medical Entomology, 2007, 44, 923-929.	1.8	82
191	Survivorship of Immature Stages of <i>Anopheles gambiae </i> s.l. (Diptera: Culicidae) in Natural Habitats in Western Kenya Highlands. Journal of Medical Entomology, 2007, 44, 758-764.	1.8	32
192	Estimating Dispersal and Survival of <i>Anopheles gambiae</i> and <i>Anopheles funestus</i> Along the Kenyan Coast by Using Mark–Release–Recapture Methods. Journal of Medical Entomology, 2007, 44, 923-929.	1.8	76
193	Plasmodium falciparum Genetic Diversity in Western Kenya Highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 1043-1050.	1.4	56
194	Spatial Relationship between Adult Malaria Vector Abundance and Environmental Factors in Western Kenya Highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 29-35.	1.4	110
195	Life-Table Analysis of Anopheles arabiensis in Western Kenya Highlands: Effects of Land Covers on Larval and Adult Survivorship. American Journal of Tropical Medicine and Hygiene, 2007, 77, 660-666.	1.4	75
196	Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 29-35.	1.4	66
197	Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. American Journal of Tropical Medicine and Hygiene, 2007, 77, 660-6.	1.4	41
198	Plasmodium falciparum genetic diversity in western Kenya highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 1043-50.	1.4	36

#	Article	IF	CITATIONS
199	Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malaria Journal, 2006, 5, 107.	2.3	109
200	Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands. Malaria Journal, 2006, 5, 13.	2.3	119
201	2 Ecology of African Highland Malaria "project review" (Ecology of African Malaria, Symposium) Tj ETQq1 1 0.7843 Medical Entomology and Zoology, 2006, 57, 29.	0.1	Overlock 10 0
202	Population Dynamics of Malaria Vectors in Western Kenya Highlands. Journal of Medical Entomology, 2006, 43, 200-206.	1.8	87
203	Population Dynamics of Malaria Vectors in Western Kenya Highlands. Journal of Medical Entomology, 2006, 43, 200-206.	1.8	90
204	ASSOCIATION BETWEEN LAND COVER AND HABITAT PRODUCTIVITY OF MALARIA VECTORS IN WESTERN KENYAN HIGHLANDS. American Journal of Tropical Medicine and Hygiene, 2006, 74, 69-75.	1.4	144
205	EFFECTS OF MICROCLIMATIC CHANGES CAUSED BY DEFORESTATION ON THE SURVIVORSHIP AND REPRODUCTIVE FITNESS OF ANOPHELES GAMBIAE IN WESTERN KENYA HIGHLANDS. American Journal of Tropical Medicine and Hygiene, 2006, 74, 772-778.	1.4	154
206	DNA PROFILING OF HUMAN BLOOD IN ANOPHELINES FROM LOWLAND AND HIGHLAND SITES IN WESTERN KENYA. American Journal of Tropical Medicine and Hygiene, 2006, 75, 231-237.	1.4	45
207	MALARIA VECTOR PRODUCTIVITY IN RELATION TO THE HIGHLAND ENVIRONMENT IN KENYA. American Journal of Tropical Medicine and Hygiene, 2006, 75, 448-453.	1.4	66
208	Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. American Journal of Tropical Medicine and Hygiene, 2006, 74, 69-75.	1.4	85
209	Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. American Journal of Tropical Medicine and Hygiene, 2006, 74, 772-8.	1.4	89
210	DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. American Journal of Tropical Medicine and Hygiene, 2006, 75, 231-7.	1.4	34
211	Malaria vector productivity in relation to the highland environment in Kenya. American Journal of Tropical Medicine and Hygiene, 2006, 75, 448-53.	1.4	49
212	Anopheles gambiaes.l. and Anopheles funestus Mosquito Distributions at 30 Villages along the Kenyan Coast. Journal of Medical Entomology, 2005, 42, 241-246.	1.8	13
213	Survivorship of <i>Anopheles gambiae</i> Sensu stricto (Diptera: Culicidae) Larvae in Western Kenya Highland Forest. Journal of Medical Entomology, 2005, 42, 270-277.	1.8	87
214	<i>Plasmodium falciparum</i> Spatial Analysis, Western Kenya Highlands. Emerging Infectious Diseases, 2005, 11, 1571-1577.	4.3	65
215	Effects of Microclimatic Changes Caused by Land Use and Land Cover on Duration of Gonotrophic Cycles of <i>Anopheles gambiae</i> (Diptera: Culicidae) in Western Kenya Highlands. Journal of Medical Entomology, 2005, 42, 974-980.	1.8	32
216	Effects of Microclimatic Changes Caused by Land Use and Land Cover on Duration of Gonotrophic Cycles of <i>Anopheles gambiae</i> (Diptera: Culicidae) in Western Kenya Highlands. Journal of Medical Entomology, 2005, 42, 974-980.	1.8	135

#	Article	IF	CITATIONS
217	Survivorship of <i>Anopheles gambiae</i> sensu stricto (Diptera: Culicidae) Larvae in Western Kenya Highland Forest. Journal of Medical Entomology, 2005, 42, 270-277.	1.8	40
218	Relationships Between Occurrence of <1>Anopheles gambiae 1 s.l. (Diptera: Culicidae) and Size and Stability of Larval Habitats. Journal of Medical Entomology, 2005, 42, 295-300.	1.8	27
219	Oviposition Site Preference and Egg Hatchability of <i> Anopheles gambiae < /i >: Effects of Land Cover Types. Journal of Medical Entomology, 2005, 42, 993-997.</i>	1.8	56
220	Relationships Between Occurrence of <i> Anopheles gambiae </i> s.l. (Diptera: Culicidae) and Size and Stability of Larval Habitats. Journal of Medical Entomology, 2005, 42, 295-300.	1.8	82
221	SPATIO-TEMPORAL DISTRIBUTION OF PLASMODIUM FALCIPARUM AND P. VIVAX MALARIA IN THAILAND. American Journal of Tropical Medicine and Hygiene, 2005, 72, 256-262.	1.4	82
222	SPATIAL DISTRIBUTION OF ANOPHELINE LARVAL HABITATS IN WESTERN KENYAN HIGHLANDS: EFFECTS OF LAND COVER TYPES AND TOPOGRAPHY. American Journal of Tropical Medicine and Hygiene, 2005, 73, 157-165.	1.4	131
223	Spatio-temporal distribution of Plasmodium falciparum and p. Vivax malaria in Thailand. American Journal of Tropical Medicine and Hygiene, 2005, 72, 256-62.	1.4	50
224	Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. American Journal of Tropical Medicine and Hygiene, 2005, 73, 157-65.	1.4	89
225	Spatial Distribution Patterns of Malaria Vectors and Sample Size Determination in Spatially Heterogeneous Environments: A Case Study in the West Kenyan Highland. Journal of Medical Entomology, 2004, 41, 1001-1009.	1.8	50
226	Association between climate variability and malaria epidemics in the East African highlands. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2375-2380.	7.1	390
227	GENETIC DIVERSITY AND MULTIPLE INFECTIONS OF PLASMODIUM VIVAX MALARIA IN WESTERN THAILAND. American Journal of Tropical Medicine and Hygiene, 2003, 68, 613-619.	1.4	117
228	Blood-meal analysis for anopheline mosquitoes sampled along the Kenyan coast. Journal of the American Mosquito Control Association, 2003, 19, 371-5.	0.7	58
229	The Effects of Climatic Factors on the Distribution and Abundance of Malaria Vectors in Kenya. Journal of Medical Entomology, 2002, 39, 833-841.	1.8	131
230	High-throughput Plasmodium falciparum hrp2 and hrp3 gene deletion typing by digital PCR to monitor malaria rapid diagnostic test efficacy. ELife, 0, 11, .	6.0	25