
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1800826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiological assessment subjected to outdoor radon and thoron concentrations and terrestrial gamma radiation measurements in Perak Malaysia. Applied Radiation and Isotopes, 2022, 179, 109991.	1.5	1
2	Spectrographic analysis of zinc-sulfate-magnesium-phosphate glass containing neodymium ions: Impact of silver–gold nanoparticles plasmonic coupling. Journal of Luminescence, 2022, 242, 118571.	3.1	4
3	Radiation hazard assessment from NORM-added paint products in Malaysia. Journal of King Saud University - Science, 2022, 34, 101850.	3.5	4
4	Public Awareness of Consumer Products Containing Radioactive Materials: Empirical Evidence from Malaysia. International Journal of Environmental Research and Public Health, 2022, 19, 2326.	2.6	3
5	Radiation shielding features for a new glass system based on tellurite oxide. Radiation Physics and Chemistry, 2022, 200, 110094.	2.8	12
6	Use of tourmaline-based healthcare products and associated radiation risks. Radiation Physics and Chemistry, 2022, 200, 110276.	2.8	1
7	Modified irradiation technique for transfusable blood using a clinical linear accelerator. Radiation Physics and Chemistry, 2022, 200, 110277.	2.8	О
8	External dose assessment of NORM added consumer products using Geant4 Monte Carlo simulations. Radiation Physics and Chemistry, 2022, 200, 110275.	2.8	1
9	2D and 3D dose analysis of PRESAGE® dosimeter using a prototype 3DmicroHD-OCT imaging system. Radiation Physics and Chemistry, 2022, 200, 110312.	2.8	4
10	Thoron activity concentration in Malaysian soil gas: Geogenic impact assessment. Radiation Physics and Chemistry, 2022, 200, 110303.	2.8	1
11	Anthropomorphic phantom organ dose assessment using optically stimulated luminescence dosimeters unified in multi-detector computed tomography. Radiation Physics and Chemistry, 2022, 200, 110383.	2.8	1
12	Radiation dose assessment of 64 Multi-Slices Computed Tomography scanner. Radiation Physics and Chemistry, 2021, 178, 108904.	2.8	3
13	Fluoroscopy-guided intervention procedure norms for occupational eye radiation dose: An overall evaluation. Radiation Physics and Chemistry, 2021, 178, 108909.	2.8	1
14	Radiological hazard associated with amang processing industry in Peninsular Malaysia and its environmental impacts. Ecotoxicology and Environmental Safety, 2021, 208, 111727.	6.0	12
15	The impact of TiO2 nanostructures on the physical properties and electrical performance of organic solar cells based on PTB7:PC71BM bulk heterojunctions. Materials Today: Proceedings, 2021, 42, 1921-1927.	1.8	3
16	The Radioactivity of Thorium Incandescent Gas Lantern Mantles. Applied Sciences (Switzerland), 2021, 11, 1311.	2.5	6
17	The geogenic influence on 220Rn activity concentration in soil gas of Johor state, Malaysia. Environmental Earth Sciences, 2021, 80, 1.	2.7	0
18	The Enhanced Naturally Occurring Radioactivity of Negative Ion Clothing and Attendant Risk. Applied Sciences (Switzerland), 2021, 11, 5412.	2.5	4

#	Article	IF	CITATIONS
19	The naturally occurring radioactivity of †̃scalar energy' pendants and concomitant radiation risk. PLoS ONE, 2021, 16, e0250528.	2.5	5
20	Radon Levels of Water Sources in the Southwest Coastal Region of Peninsular Malaysia. Applied Sciences (Switzerland), 2021, 11, 6842.	2.5	12
21	Soil gas radon and soil permeability assessment: Mapping radon risk areas in Perak State, Malaysia. PLoS ONE, 2021, 16, e0254099.	2.5	11
22	Tabulation of organ dose conversion factors for terrestrial radioactivity monitoring program. Applied Radiation and Isotopes, 2021, 174, 109791.	1.5	2
23	Radioactive material in cosmetic and healthcare products: Regulatory controls. Radiation Physics and Chemistry, 2021, 188, 109673.	2.8	2
24	Cumulative lifetime attributed risks for patients subjected to contrast enhanced chest CT examinations. Radiation Physics and Chemistry, 2021, 189, 109710.	2.8	1
25	Generic review on the potential of nuclear-renewable hybrid system for sustainable power production in Malaysia. Journal of Physics: Conference Series, 2021, 2053, 012021.	0.4	2
26	Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through Hot-Substrate Coating. Journal of Electronic Materials, 2021, 50, 6828-6835.	2.2	5
27	Naturally Occurring Radioactive Materials in Bracelets and Necklaces: Radiological Risk Evaluation. International Journal of Environmental Research and Public Health, 2021, 18, 11170.	2.6	1
28	Dose assessment of 4- and 16-slice multi-detector computed tomography (MDCT) scanners. Radiation Physics and Chemistry, 2020, 168, 108445.	2.8	3
29	Dosimetric features and kinetic parameters of a glass system dosimeter. Luminescence, 2020, 35, 525-533.	2.9	3
30	238U and 232Th isotopes in groundwater of Jordan: Geological influence, water chemistry, and health impact. Radiation Physics and Chemistry, 2020, 170, 108660.	2.8	3
31	On the lasing potency of samarium-activated BaSO4–TeO2–B2O3 glass host: Judd–Ofelt analysis. Indian Journal of Physics, 2020, 94, 1811-1820.	1.8	8
32	Modified structure and spectroscopic characteristics of Sm3+/Dy3+ co-activated barium-sulfur-telluro-borate glass host: Role of plasmonic gold nanoparticles inclusion. Optics and Laser Technology, 2020, 132, 106486.	4.6	17
33	Physical, thermal and absorption traits of lithium strontium zinc borate glasses: Sensitiveness on Dy3+ doping. Journal of Alloys and Compounds, 2020, 844, 156176.	5.5	30
34	Radon activity concentration measurements in water sources from Perak state Malaysia. Journal of Radiation Research and Applied Sciences, 2020, 13, 665-671.	1.2	9
35	Assessment of geogenic radon potential in Johor Malaysia. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 1065-1074.	1.5	2
36	Radiological dose and health impact to Jordanian populace due to radioactivity in staple food crops from four representative soils in Jordan. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 1679-1689.	1.5	7

#	Article	IF	CITATIONS
37	Absorption and luminescence spectral analysis of Dy3+-doped magnesium borate glass. Chinese Journal of Physics, 2020, 66, 307-317.	3.9	13
38	Juddâ~'Ofelt calculations for spectroscopic characteristics of Dy3+-activated strontium magnesium borate glass. Optik, 2020, 218, 165001.	2.9	21
39	Spectroscopic characteristics of Dy3+ impurities–doped borate-based glasses: Judd–Ofelt calculation. Materials Chemistry and Physics, 2020, 253, 123386.	4.0	26
40	SCATTER RADIATION IN THE FLUOROSCOPY-GUIDED INTERVENTIONAL ROOM. Radiation Protection Dosimetry, 2020, 188, 397-402.	0.8	6
41	A new insight into the temperature induced molecular aggregations in tris(8-hydroxyquinoline) metals. Journal of Materials Research and Technology, 2020, 9, 4558-4565.	5.8	9
42	Structures and spectroscopic characteristics of barium-sulfur-telluro-borate glasses: Role of Sm3+ and Dy3+ Co-activation. Materials Chemistry and Physics, 2020, 247, 122862.	4.0	36
43	Unique optical traits of Sm3+ -doped magnesium borate glass. Chinese Journal of Physics, 2020, 66, 36-49.	3.9	2
44	The radiological assessment, hazard evaluation, and spatial distribution for a hypothetical nuclear power plant accident at Baiji potential site. Environmental Sciences Europe, 2020, 32, .	5.5	12
45	Spectroscopic behaviour of Dy3+ and Sm3+ impurity-doped strontium magnesium borate glasses: A comparative evaluation. Optik, 2020, 224, 165641.	2.9	8
46	Enhanced Performance of PTB7:PC ₇₁ BM Based Organic Solar Cells by Incorporating a Nano-Layered Electron Transport of Titanium Oxide. ECS Journal of Solid State Science and Technology, 2020, 9, 105003.	1.8	8
47	Activity concentrations of 226Ra, 228Ra, 222Rn and their health impact in the groundwater of Jordan. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 305-318.	1.5	24
48	Effectiveness of Al2O3:C OSL dosimeter towards entrance surface dose measurement in common X-ray diagnostics. Radiation Physics and Chemistry, 2019, 165, 108418.	2.8	6
49	Optical traits of neodymium-doped new types of borate glasses: Judd-Ofelt analysis. Optik, 2019, 199, 163515.	2.9	17
50	Brent's algorithm based new computational approach for accurate determination of single-diode model parameters to simulate solar cells and modules. Solar Energy, 2019, 193, 782-798.	6.1	32
51	Waveguide laser potency of samarium doped BaSO4-TeO2-B2O3 glasses: Evaluation of structural and optical qualities. Journal of Luminescence, 2019, 216, 116686.	3.1	15
52	Comparison study between different contrast administration protocols for routine CT thorax examination in two tertiary centres. Journal of Physics: Conference Series, 2019, 1248, 012028.	0.4	1
53	Occupational radiation dose during fluoroscopy guided interventional procedures at Institut Kanser Negara. Journal of Physics: Conference Series, 2019, 1248, 012052.	0.4	1
54	Direct and indirect entrance surface dose measurement in X-ray diagnostics using nanoDot OSL dosimeters. Journal of Physics: Conference Series, 2019, 1248, 012014.	0.4	3

#	Article	IF	CITATIONS
55	Realization of dysprosium doped lithium magnesium borate glass based TLD subjected to 1–100â€ ⁻ Gy photon beam irradiations. Radiation Physics and Chemistry, 2019, 163, 1-10.	2.8	16
56	Investigation of natural gamma radiation dose rate (GDR) levels and its relationship with soil type and underlying geological formations in Jordan. Journal of African Earth Sciences, 2019, 155, 32-42.	2.0	8
57	Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS ONE, 2019, 14, e0216201.	2.5	49
58	ASSESSMENT ON THE INTERCHANGEABILITY OF PERSONAL EFFECTIVE DOSE ALGORITHMS IN FLUOROSCOPY-GUIDED INTERVENTIONS USING BLAND-ALTMAN ANALYSIS. Radiation Protection Dosimetry, 2019, 186, 462-468.	0.8	0
59	Analysis of the physical, structural and optical characteristics of Dy3+-doped MgO–SrO–B2O3 glass systems. Indian Journal of Physics, 2019, 93, 1265-1273.	1.8	2
60	Statistical relationship between activity concentrations of radionuclides ²²⁶ Ra, ²³² Th, ⁴⁰ K, and ¹³⁷ Cs and geological formations in surface soil of Jordan. Isotopes in Environmental and Health Studies, 2019, 55, 211-226.	1.0	8
61	Entrance surface dose of eyes and thyroid using nanoDot optically stimulated luminescence in 64-slices computed tomography scanner. AIP Conference Proceedings, 2019, , .	0.4	Ο
62	Light induced fading in optically stimulated luminescence dots for medical dosimetry measurement. AIP Conference Proceedings, 2019, , .	0.4	0
63	Measurement of gross alpha and beta activity concentration in groundwater of Jordan: groundwater quality, annual effective dose and lifetime risk assessment. Journal of Water and Health, 2019, 17, 957-970.	2.6	9
64	The effectiveness of bismuth breast shielding with protocol optimization in CT Thorax examination. Journal of X-Ray Science and Technology, 2019, 27, 139-147.	1.0	9
65	Atmospheric dispersion modeling and radiological safety assessment for expected operation of Baiji nuclear power plant potential site. Annals of Nuclear Energy, 2019, 127, 156-164.	1.8	13
66	Assessment of health risk associated with natural gamma dose rate levels and isodose mapping of Jordan. Radiation Effects and Defects in Solids, 2019, 174, 294-306.	1.2	1
67	Potential areas for nuclear power plants siting in Saudi Arabia: GIS-based multi-criteria decision making analysis. Progress in Nuclear Energy, 2019, 110, 110-120.	2.9	20
68	Investigation on Neutron Flux Effect onto Irradiated Fuel Burn-up Stored in the Reactor TRIGA PUSPATI. Atom Indonesia, 2019, 45, 59.	0.5	0
69	Radiological dose assessment due to hypothetical nuclear power plant operation in Mersing, Johor, Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 532-536.	0.8	1
70	Synthesis and characterisation of dysprosium-doped borate glasses for use in radiation dosimeters. Vietnam Journal of Science Technology and Engineering, 2019, 61, 3-8.	0.2	0
71	Optically stimulated Al 2 O 3 :C luminescence dosimeters for teletherapy: H p (10) performance evaluation. Applied Radiation and Isotopes, 2018, 135, 7-11.	1.5	4
72	General radiographic attributes of optically stimulated luminescence dosimeters: A basic insight. Radiation Physics and Chemistry, 2018, 147, 1-6.	2.8	10

#	Article	IF	CITATIONS
73	X-ray shielding behaviour of kaolin derived mullite-barites ceramic. Radiation Physics and Chemistry, 2018, 144, 63-68.	2.8	26
74	Development of underwater radiography scanner for reactor-pool experiment at the TRIGA PUSPATI reactor. MethodsX, 2018, 5, 1346-1363.	1.6	1
75	Adding sustainable sources to the Saudi Arabian electricity sector. Electricity Journal, 2018, 31, 20-28.	2.5	15
76	Glow curve analysis of glassy system dosimeter subjected to photon and electron irradiations. Results in Physics, 2018, 10, 772-776.	4.1	11
77	Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. Journal of Rare Earths, 2018, 36, 1264-1271.	4.8	69
78	Reproducibility assessment of commercial optically stimulated luminescence system in diagnostic X-ray beams. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 2029-2036.	1.5	10
79	Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range. Journal of Physics: Conference Series, 2017, 851, 012001.	0.4	6
80	Estimation of radiation cancer risk in CT-KUB. Radiation Physics and Chemistry, 2017, 137, 130-134.	2.8	13
81	Luminescence features of dysprosium and phosphorus oxide co-doped lithium magnesium borate glass. Radiation Physics and Chemistry, 2017, 137, 45-48.	2.8	31
82	Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure. Journal of Physics: Conference Series, 2017, 851, 012006.	0.4	4
83	128 slice computed tomography dose profile measurement using thermoluminescent dosimeter. Journal of Physics: Conference Series, 2017, 851, 012002.	0.4	2
84	Thermoluminescence Energy Response of Copper and Magnesium Oxide Doped Lithium Potassium Borate Using a Monte Carlo N-Particle Code Simulation. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2017, 06, 304-312.	0.1	1
85	Impact of Eu3+ Ions on Physical and Optical Properties of Li2O-Na2O-B2O3 Glass. Chinese Journal of Chemical Physics, 2016, 29, 395-400.	1.3	23
86	Establishment of multi-slice computed tomography (MSCT) reference level in Johor, Malaysia. Journal of Physics: Conference Series, 2016, 694, 012033.	0.4	6
87	Photoluminescence and thermoluminescence properties of Li ₂ Oâ€Na ₂ Oâ€B ₂ O ₃ glass. Luminescence, 2016, 31, 754-75	59 ^{2.9}	7
88	Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose. Journal of Physics: Conference Series, 2016, 694, 012031.	0.4	11
89	Regulatory requirements for nuclear power plant site selection in Malaysia—a review. Journal of Radiological Protection, 2016, 36, R96-R111.	1.1	9
90	Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. Journal of Luminescence, 2016, 177, 366-372.	3.1	81

#	Article	IF	CITATIONS
91	Radiation dose to physicians' eye lens during interventional radiology. Journal of Physics: Conference Series, 2016, 694, 012035.	0.4	5
92	Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom. Radiation Physics and Chemistry, 2016, 126, 14-20.	2.8	25
93	Radiation doses from computed tomography practice in Johor Bahru, Malaysia. Radiation Physics and Chemistry, 2016, 121, 69-74.	2.8	21
94	EPR dosimeter material properties of potassium tartrate hemihydrate. Radiation Measurements, 2016, 87, 8-12.	1.4	5
95	PET Image Reconstruction Incorporating 3D Mean-Median Sinogram Filtering. IEEE Transactions on Nuclear Science, 2016, 63, 157-169.	2.0	12
96	Characterization of amorphous thermoluminescence dosimeters for patient dose measurement in X-ray diagnostic procedures. Radiation Physics and Chemistry, 2015, 116, 130-134.	2.8	18
97	SLE presenting as multiple hemorrhagic complications. Lupus, 2015, 24, 1103-1106.	1.6	7
98	Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram. Radiation Physics and Chemistry, 2015, 116, 300-304.	2.8	5
99	Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system. Radiation Physics and Chemistry, 2015, 115, 81-87.	2.8	4
100	Luminescence characteristics of Li2O–MgO–B2O3 doped with Dy3+ as a solid TL detector. Radiation Physics and Chemistry, 2015, 116, 138-141.	2.8	27
101	Thermoluminescence response of dysprosium doped strontium tetraborate glasses subjected to electron irradiations. Applied Radiation and Isotopes, 2015, 102, 10-14.	1.5	23
102	Influences of dysprosium and phosphorous oxides co-doping on thermoluminescence features and kinetic parameters of lithium magnesium borate glass. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 469-477.	1.5	25
103	Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide. Luminescence, 2015, 30, 1330-1335.	2.9	23
104	Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons. Radiation Physics and Chemistry, 2015, 112, 29-33.	2.8	15
105	Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik, 2015, 126, 3638-3643.	2.9	32
106	Optical fiber based dosimeter sensor: Beyond TLD-100 limits. Sensors and Actuators A: Physical, 2015, 222, 48-57.	4.1	17
107	Potential application of pure silica optical flat fibers for radiation therapy dosimetry. Radiation Physics and Chemistry, 2015, 106, 73-76.	2.8	18
108	Thermoluminescence response of flat optical fiber subjected to 9MeV electron irradiations. Radiation Physics and Chemistry, 2015, 106, 46-49.	2.8	22

#	Article	IF	CITATIONS
109	The Thermoluminescence Performance of Ge- Doped Optical Fibres To 6 Mv Photon Irradiations. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	0
110	Structural and optical properties of lithium sodium borate glasses doped with Sm ³⁺ ions. International Journal of Modern Physics B, 2014, 28, 1450182.	2.0	2
111	Physical and optical properties of Li2O-MgO-B2O3 doped with Dy3+. Optics and Spectroscopy (English) Tj ETQq1	1,0,7843 0.6	14.rgBT /O
112	Dosimetric characteristics of LKB:Cu,P solid TL detector. Radiation Physics and Chemistry, 2014, 104, 36-39.	2.8	5
113	Dopant concentration and thermoluminescence (TL) properties of tailor-made Ge-doped SiO2 fibres. Radiation Physics and Chemistry, 2014, 104, 297-301.	2.8	12
114	Physical and optical properties of Li2O–MgO–B2O3 doped with Sm3+. Journal of Molecular Structure, 2014, 1060, 6-10.	3.6	30
115	The effect of europium oxide impurity on the optical and physical properties of lithium potassium borate glass. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 56-60.	0.6	2
116	Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass. Optical Materials, 2014, 37, 391-397.	3.6	97
117	Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions. Journal of Molecular Structure, 2014, 1075, 113-117.	3.6	47
118	Copper doped borate dosimeters revisited. Journal of Luminescence, 2014, 155, 141-148.	3.1	17
119	Physical and optical properties of Dy3+: Li2O–K2O–B2O3 glasses. Journal of Molecular Structure, 2014, 1076, 20-25.	3.6	96
120	Physical and optical properties of dysprosium ion doped strontium borate glasses. Physica B: Condensed Matter, 2014, 451, 63-67.	2.7	79
121	The optical properties of trivalent rare earth ions (Er3+) doped borotellurite glass. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 116, 413-417.	0.6	11
122	Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides. Applied Radiation and Isotopes, 2014, 91, 126-130.	1.5	38
123	Photon irradiation response of photonic crystal fibres and flat fibres at radiation therapy doses. Applied Radiation and Isotopes, 2014, 90, 258-260.	1.5	11
124	Thermoluminescent response of single mode optical fibre to x-ray irradiation. Journal of Physics: Conference Series, 2014, 546, 012018.	0.4	1
125	Assessment of Ge-doped optical fibres subjected to x-ray irradiation. Journal of Physics: Conference Series, 2014, 546, 012017.	0.4	4
126	Overview of the Sensitivity of Ge- and Al-doped Silicon Dioxide Optical Fibres to Ionizing Radiation. Malaysian Journal of Fundamental and Applied Sciences, 2014, 8, .	0.8	1

#	Article	IF	CITATIONS
127	Analysis of Photon Scattering Trends for Material Classification Using Artificial Neural Network Models. IEEE Transactions on Nuclear Science, 2013, 60, 515-519.	2.0	4
128	Effective Atomic Number of Ge-Doped and Al-Doped Optical Fibers for Radiation Dosimetry Purposes. IEEE Transactions on Nuclear Science, 2013, 60, 555-559.	2.0	27
129	The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 537-543.	0.6	8
130	Modelling of light photons detection in scintillation camera. , 2013, , .		0
131	Thermoluminescence properties of Li2CO3-K2CO3-H3BO3 glass system co-doped with CuO and MgO. Radiation Protection Dosimetry, 2013, 155, 1-10.	0.8	10
132	The Effect of TiO2 and MgO on the Thermoluminescence Properties of a Lithium Potassium Borate Glass System. Journal of Physics and Chemistry of Solids, 2013, 74, 1816-1822.	4.0	38
133	Physical, structural, and luminescence studies of Nd3+ doped MgO-ZnO borate glass. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 701-707.	0.6	6
134	Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg. Applied Radiation and Isotopes, 2013, 78, 21-25.	1.5	14
135	Luminescence characteristics of Li2CO3–K2CO3–H3BO3 glasses co-doped with TiO2/MgO. Applied Radiation and Isotopes, 2013, 82, 12-19.	1.5	29
136	Thermoluminescence characteristics of the Li2CO3–K2CO3–H3BO3 glass system co-doped with CuO and MgO. Journal of Luminescence, 2013, 143, 1-4.	3.1	18
137	Validation of a Clinical PET Scanner Using Monte Carlo Simulation Code: MCNP5. , 2013, , .		0
138	Simulation of intrinsic resolution of scintillation camera in Monte Carlo environment. , 2013, , .		0
139	The thermoluminescence response of undoped silica PCF for dosimetry application. , 2013, , .		5
140	Dosimetric Characteristics of a LKB:Cu,Mg Solid Thermoluminescence Detector. Chinese Physics Letters, 2013, 30, 017801.	3.3	10
141	THE EFFECT OF PHOSPHORUS AND COPPER OXIDE ON THE PHOTOLUMINESCENCE CHARACTERISTICS OF Li2 CO3–K2CO3–H3BO3 GLASS. International Journal of Modern Physics B, 2012, 26, 1250116.	2.0	7
142	The effect of titanium oxide on the optical properties of lithium potassium borate glass. Journal of Molecular Structure, 2012, 1026, 159-167.	3.6	53
143	Preliminary results from attenuation correction for MCNP-generated PET image. , 2012, , .		3
144	The effect of CuO and MgO impurities on the optical properties of lithium potassium borate glass. Physica B: Condensed Matter, 2012, 407, 2390-2397.	2.7	38

#	Article	IF	CITATIONS
145	Optical properties of lithium magnesium borate glasses doped with Dy3+ and Sm3+ ions. Physica B: Condensed Matter, 2012, 407, 2398-2403.	2.7	91
146	Ion Beam, SEM and EDXRS Analysis on Doped SiO2 Optical Fibres. Progress in Nuclear Science and Technology, 2012, 3, 116-119.	0.3	0
147	Thermoluminescence Response of Ge- and Al-Doped Optical Fibers Subjected to Low-Dose Electron Irradiation. Journal of Nuclear Science and Technology, 2011, 48, 1115-1117.	1.3	27
148	Photon signature analysis using template matching. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652, 466-469.	1.6	4
149	Electron irradiation response on Ge and Al-doped SiO2 optical fibres. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637, 185-189.	1.6	44
150	The Development of Doped Radiosensitive Glass. , 2011, , .		2
151	Thermoluminescence Response of Ge- and Al-Doped Optical Fibers Subjected to Low-Dose Electron Irradiation. Journal of Nuclear Science and Technology, 2011, 48, 1115-1117.	1.3	3
152	The thermoluminescence response of oxygen-doped optical fibres subjected to photon and electron irradiations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 291-294.	1.6	30
153	Photon-induced positron annihilation for standoff bomb detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 415-418.	1.6	1
154	The performance of a wire mesh collimator SPECT camera for different breast volumes in prone position. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 385-387.	1.6	9
155	The thermoluminescence response of doped SiO2 optical fibres subjected to fast neutrons. Applied Radiation and Isotopes, 2010, 68, 700-703.	1.5	45
156	The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations. Applied Radiation and Isotopes, 2009, 67, 423-427.	1.5	84
157	The thermoluminescence response of doped SiO2 optical fibres subjected to alpha-particle irradiation. Applied Radiation and Isotopes, 2009, 67, 428-432.	1.5	51
158	Monte Carlo Simulation on Breast Cancer Detection Using Wire Mesh Collimator Gamma Camera. IEEE Transactions on Nuclear Science, 2009, 56, 1321-1324.	2.0	12
159	Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5. AIP Conference Proceedings, 2008, , .	0.4	3
160	Mass Attenuation Coefficients and Effective Atomic Numbers of Strontium Borate Glass System in the Energy Range 0.01- 1.25 MeV. Advanced Materials Research, 0, 895, 315-318.	0.3	1
161	Optical Properties of Undoped and Dy ³⁺ -Doped Boro-Tellurite Glass. Advanced Materials Research, 0, 895, 194-199.	0.3	2