Clarissa A Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1800770/publications.pdf

Version: 2024-02-01

516710 254184 2,077 44 16 citations h-index papers

g-index 51 51 51 1123 docs citations times ranked citing authors all docs

43

#	Article	IF	CITATIONS
1	An integrated theory of whole number and fractions development. Cognitive Psychology, 2011, 62, 273-296.	2.2	505
2	Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 2014, 123, 53-72.	1.4	376
3	The Logarithmicâ€Toâ€Linear Shift: One Learning Sequence, Many Tasks, Many Time Scales. Mind, Brain, and Education, 2009, 3, 143-150.	1.9	142
4	How 15 Hundred Is Like 15 Cherries: Effect of Progressive Alignment on Representational Changes in Numerical Cognition. Child Development, 2010, 81, 1768-1786.	3.0	126
5	Early development of spatialâ€numeric associations: evidence from spatial and quantitative performance of preschoolers. Developmental Science, 2010, 13, 761-771.	2.4	121
6	Children Are Not Like Older Adults: A Diffusion Model Analysis of Developmental Changes in Speeded Responses. Child Development, 2012, 83, 367-381.	3.0	92
7	Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers. Psychological Science, 2010, 21, 1274-1281.	3.3	79
8	Costs and benefits of representational change: Effects of context on age and sex differences in symbolic magnitude estimation. Journal of Experimental Child Psychology, 2008, 101, 20-51.	1.4	78
9	The Trouble With Transfer: Insights From Microgenetic Changes in the Representation of Numerical Magnitude. Child Development, 2008, 79, 788-804.	3.0	72
10	Modeling individual differences in response time and accuracy in numeracy. Cognition, 2015, 137, 115-136.	2.2	65
11	Free versus anchored numerical estimation: A unified approach. Cognition, 2016, 149, 11-17.	2.2	51
12	Numerical landmarks are usefulâ€"except when they're not. Journal of Experimental Child Psychology, 2014, 120, 39-58.	1.4	45
13	Number lines, but not area models, support children's accuracy and conceptual models of fraction division. Contemporary Educational Psychology, 2019, 58, 288-298.	2.9	25
14	Who uses more strategies? Linking mathematics anxiety to adults' strategy variability and performance on fraction magnitude tasks. Thinking and Reasoning, 2019, 25, 94-131.	3.2	25
15	Children can accurately monitor and control their number-line estimation performance Developmental Psychology, 2016, 52, 1493-1502.	1.6	21
16	Children's and Adults' Math Attitudes Are Differentiated by Number Type. Journal of Experimental Education, 2021, 89, 1-32.	2.6	20
17	What Drives Preventive Health Behavior During a Global Pandemic? Emotion and Worry. Annals of Behavioral Medicine, 2021, 55, 791-804.	2.9	18
18	Implicit Analogies in Learning: Supporting Transfer by Warming Up. Current Directions in Psychological Science, 2019, 28, 619-625.	5. 3	17

#	Article	IF	CITATIONS
19	Gender differences in confidence during number-line estimation. Metacognition and Learning, 2021, 16, 157-178.	2.7	17
20	From continuous magnitudes to symbolic numbers: The centrality of ratio. Behavioral and Brain Sciences, 2017, 40, e190.	0.7	16
21	Confident or familiar? The role of familiarity ratings in adults' confidence judgments when estimating fraction magnitudes. Metacognition and Learning, 2020, 15, 215-231.	2.7	16
22	Individual differences in the components of children's and adults' information processing for simple symbolic and non-symbolic numeric decisions. Journal of Experimental Child Psychology, 2016, 150, 48-71.	1.4	15
23	Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers. Frontiers in Psychology, 2016, 7, 24.	2.1	14
24	Do adults treat equivalent fractions equally? Adults' strategies and errors during fraction reasoning Journal of Experimental Psychology: Learning Memory and Cognition, 2020, 46, 2049-2074.	0.9	12
25	Student Perceptions of General Education Requirements at a Large Public University: No Surprises?. Journal of General Education, The, 2015, 64, 278-293.	0.2	10
26	Math matters: A novel, brief educational intervention decreases whole number bias when reasoning about COVID-19 Journal of Experimental Psychology: Applied, 2021, 27, 632-656.	1.2	10
27	Can feedback, correct, and incorrect worked examples improve numerical magnitude estimation precision?. Journal of Experimental Education, 2023, 91, 20-45.	2.6	8
28	Math anxiety, but not induced stress, is associated with objective numeracy Journal of Experimental Psychology: Applied, 2020, 26, 604-619.	1.2	6
29	Developmental differences in monitoring accuracy and cue use when estimating whole-number and fraction magnitudes. Cognitive Development, 2022, 61, 101148.	1.3	6
30	Diagrams support spontaneous transfer across whole number and fraction concepts. Contemporary Educational Psychology, 2022, 69, 102066.	2.9	6
31	Children's mental representation when comparing fractions with common numerators. Educational Psychology, 2013, 33, 175-191.	2.7	5
32	Effects of figural and numerical presentation formats on growing pattern performance. Journal of Numerical Cognition, 2021, 7, 125-155.	1.2	5
33	Numeracy and COVID-19: examining interrelationships between numeracy, health numeracy and behaviour. Royal Society Open Science, 2022, 9, 201303.	2.4	5
34	"But I Thought I Knew That!―Student Confidence Judgments on Course Examinations in Introductory Psychology. Teaching of Psychology, 2015, 42, 330-334.	1.2	4
35	Are Books Like Number Lines? Children Spontaneously Encode Spatial-Numeric Relationships in a Novel Spatial Estimation Task. Frontiers in Psychology, 2017, 8, 2242.	2.1	4
36	Perceptions of ease and difficulty, but not growth mindset, relate to specific math attitudes. British Journal of Educational Psychology, 2021, , e12472.	2.9	4

3

#	Article	IF	CITATIONS
37	Confidence in COVID problem solving: What factors predict adults' item-level metacognitive judgments on health-related math problems before and after an educational intervention?. Metacognition and Learning, 2022, 17, 989-1023.	2.7	4
38	Affective constraints on acquisition of musical concepts: Children's and adults' development of the major–minor distinction. Psychology of Music, 2014, 42, 3-28.	1.6	3
39	Development of Fraction Understanding. , 2019, , 148-182.		2
40	Math predictors of numeric health and non-health decision-making problems. Journal of Numerical Cognition, 2021, 7, 221-239.	1.2	2
41	From integers to fractions: The role of analogy in developing a coherent understanding of proportional magnitude Developmental Psychology, 2022, 58, 1912-1930.	1.6	2
42	Students' ability to calculate their final course grade may not be as easy as you think: Insights from mathematical cognition Scholarship of Teaching and Learning in Psychology, 2023, 9, 326-333.	1.4	1
43	Cognitive Development: Mathematics Learning and Instruction. , 2015, , 66-75.		0
44	Trouble with Transfer: Insights from the Study of Learning. , 2012, , 3347-3350.		0