Wenwei Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798971/publications.pdf

Version: 2024-02-01

5221
36
g-index
2172
2172
citing authors

#	Article	IF	CITATIONS
1	A phosphotyrosine switch regulates organic cation transporters. Nature Communications, 2016, 7, 10880.	12.8	100
2	Cyclin-dependent Kinase 2 Negatively Regulates Human Pregnane X Receptor-mediated CYP3A4 Gene Expression in HepG2 Liver Carcinoma Cells. Journal of Biological Chemistry, 2008, 283, 30650-30657.	3.4	90
3	SPA70 is a potent antagonist of human pregnane X receptor. Nature Communications, 2017, 8, 741.	12.8	82
4	Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Advances, 2017, 1, 1657-1671.	5 . 2	76
5	Flavonoids activate pregnane $\tilde{A}-$ receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochemistry, 2010, 11, 23.	4.4	63
6	Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicology and Applied Pharmacology, 2013, 272, 96-107.	2.8	62
7	Identification of Small Molecule Activators of BMP Signaling. PLoS ONE, 2013, 8, e59045.	2.5	61
8	A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicology and Applied Pharmacology, 2012, 258, 268-274.	2.8	57
9	Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via $RXR\hat{I}^3$ activation. Journal of Experimental Medicine, 2013, 210, 2675-2692.	8.5	52
10	Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain. Chemistry and Biology, 2010, 17, 892-902.	6.0	47
11	Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochemical Pharmacology, 2013, 86, 1531-1540.	4.4	46
12	Targeting Histone Demethylases in MYC-Driven Neuroblastomas with Ciclopirox. Cancer Research, 2017, 77, 4626-4638.	0.9	42
13	CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor. Molecular Pharmacology, 2015, 87, 878-889.	2.3	41
14	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 325-339.	9.7	35
15	Synthesis, Flow Cytometric Evaluation, and Identification of Highly Potent Dipyridamole Analogues as Equilibrative Nucleoside Transporter 1 Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 3906-3920.	6.4	30
16	Identification of trisubstituted-pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 2919-2938.	3.0	29
17	A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases. Journal of Medicinal Chemistry, 2015, 58, 1563-1568.	6.4	28
18	Synthesis of a Peptidomimetic HCMV Protease Inhibitor Library. Synthesis, 2002, 2002, 1017-1026.	2.3	27

#	Article	IF	CITATIONS
19	Serine 350 of human pregnane X receptor is crucial for its heterodimerization with retinoid X receptor alpha and transactivation of target genes in vitro and in vivo. Biochemical Pharmacology, 2015, 96, 357-368.	4.4	24
20	CITCO Directly Binds to and Activates Human Pregnane X Receptor. Molecular Pharmacology, 2020, 97, 180-190.	2.3	24
21	Development of BODIPY FL Vindoline as a Novel and High-Affinity Pregnane X Receptor Fluorescent Probe. Bioconjugate Chemistry, 2014, 25, 1664-1677.	3.6	23
22	Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cellular and Molecular Life Sciences, 2021, 78, 317-335.	5.4	21
23	Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chemical Biology, 2017, 12, 2436-2447.	3.4	20
24	Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery. Bioorganic and Medicinal Chemistry, 2013, 21, 4266-4278.	3.0	19
25	An unexpected protein interaction promotes drug resistance in leukemia. Nature Communications, 2017, 8, 1547.	12.8	19
26	Glucose-dependent regulation of pregnane X receptor is modulated by AMP-activated protein kinase. Scientific Reports, 2017, 7, 46751.	3.3	18
27	PRL-3 Mediates the Protein Maturation of ULBP2 by Regulating the Tyrosine Phosphorylation of HSP60. Journal of Immunology, 2015, 194, 2930-2941.	0.8	17
28	Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Science Signaling, 2018, 11 , .	3.6	17
29	Using TR-FRET to Investigate Protein–Protein Interactions: A Case Study of PXR-Coregulator Interaction. Advances in Protein Chemistry and Structural Biology, 2018, 110, 31-63.	2.3	17
30	Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug Discovery Today, 2019, 24, 906-915.	6.4	17
31	Structural basis for substrate recognition and chemical inhibition of oncogenic MAGE ubiquitin ligases. Nature Communications, 2020, 11, 4931.	12.8	17
32	A vinblastine fluorescent probe for pregnane X receptor in a time-resolved fluorescence resonance energy transfer assay. Analytical Biochemistry, 2013, 443, 252-260.	2.4	16
33	Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor. European Journal of Medicinal Chemistry, 2016, 108, 505-528.	5.5	16
34	Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70. Journal of Medicinal Chemistry, 2021, 64, 1733-1761.	6.4	15
35	High-Throughput Screening Reveals Alsterpaullone, 2-Cyanoethyl as a Potent p27Kip1 Transcriptional Inhibitor. PLoS ONE, 2014, 9, e91173.	2.5	14
36	Alteration of RNA Splicing by Small-Molecule Inhibitors of the Interaction between NHP2L1 and U4. SLAS Discovery, 2018, 23, 164-173.	2.7	14

#	Article	IF	CITATIONS
37	Identification of small molecules that mitigate vincristineâ€induced neurotoxicity while sensitizing leukemia cells to vincristine. Clinical and Translational Science, 2021, 14, 1490-1504.	3.1	12
38	SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1. ACS Medicinal Chemistry Letters, 2022, 13, 1311-1320.	2.8	12
39	General Stepwise Approach to Optimize a TR-FRET Assay for Characterizing the BRD/PROTAC/CRBN Ternary Complex. ACS Pharmacology and Translational Science, 2021, 4, 941-952.	4.9	11
40	Design, Synthesis, and Evaluation of 2-Diethanolamino-4,8-diheptamethyleneimino-2-(<i>N</i> -aminoethyl- <i>N</i> -ethanolamino)-6-(<i>N,N</i> -diethanolamino-4,8-diheptamethyleneimino-2-(<i>N</i> -aminoethyl- <i>N</i> -ethanolamino)-6-(<i>N,N</i> -diethanolamino-4,8-diheptamethyleneimino-2-(<i>N</i> -aminoethyl- <i>N</i> -ethanolamino)-6-(<i>N,N</i> -ethanolamino)-6-(<i>N,N</i> -ethanolamino)-6-(<i i="" n,n<="">-ethanolamino)-6-(<i i="" n,n<="">-ethanolamino)-6-(<i>N,N</i>-ethanolamino)-6-(<i i="" n,n<="">-ethanolamino)-6-(<i i="" n,n<="">-ethanolami</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	thanolami 3.6	no)pyrimido[.
41	Development of a Pterin-Based Fluorescent Probe for Screening Dihydropteroate Synthase. Bioconjugate Chemistry, 2011, 22, 2110-2117.	3.6	9
42	High-Throughput Screening Identifies 1,4,5-Substituted 1,2,3-Triazole Analogs as Potent and Specific Antagonists of Pregnane X Receptor. Assay and Drug Development Technologies, 2017, 15, 383-394.	1.2	9
43	Development of BODIPY FL VH032 as a High-Affinity and Selective von Hippel–Lindau E3 Ligase Fluorescent Probe and Its Application in a Time-Resolved Fluorescence Resonance Energy-Transfer Assay. ACS Omega, 2021, 6, 680-695.	3.5	9
44	Identification and Characterization of CINPA1 Metabolites Facilitates Structure-Activity Studies of the Constitutive Androstane Receptor. Drug Metabolism and Disposition, 2016, 44, 1759-1770.	3.3	8
45	Development of BODIPY FL Thalidomide As a High-Affinity Fluorescent Probe for Cereblon in a Time-Resolved Fluorescence Resonance Energy Transfer Assay. Bioconjugate Chemistry, 2020, 31, 2564-2575.	3.6	8
46	17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. IScience, 2021, 24, 101996.	4.1	7
47	Biological evaluation and synthesis of calcitroic acid. Bioorganic Chemistry, 2021, 116, 105310.	4.1	5
48	A protocol for high-throughput screening of histone lysine demethylase 4 inhibitors using TR-FRET assay. STAR Protocols, 2021, 2, 100702.	1.2	1
49	PI3K and MEK Inhibition in Hypodiploid Acute Lymphoblastic Leukemia. Blood, 2016, 128, 1635-1635.	1.4	0
50	Exploiting ABCG2 Inhibition to Improve Cancer Therapy. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR34-4.	0.0	0
51	Is Inhibitor Binding the Sole Requirement in Determining Inhibition of ABCG2 Mediated Transport?. FASEB Journal, 2018, 32, 693.9.	0.5	0
52	Developing Inhibitors that Exploit ABCG2 and Cancer Dependencies to Improve Therapeutic Outcome. FASEB Journal, 2019, 33, .	0.5	0