
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tau Aggregation. Neuroscience, 2023, 518, 64-69.	2.3	20
2	Microtubule-associated protein tau in murine kidney: role in podocyte architecture. Cellular and Molecular Life Sciences, 2022, 79, 97.	5.4	10
3	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Molecular Neurobiology, 2022, 59, 1632-1648.	4.0	6
4	TNAP upregulation is a critical factor in Tauopathies and its blockade ameliorates neurotoxicity and increases life-expectancy. Neurobiology of Disease, 2022, 165, 105632.	4.4	2
5	p38 activation occurs mainly in microglia in the P301S Tauopathy mouse model. Scientific Reports, 2022, 12, 2130.	3.3	5
6	Glycolysis and gluconeogenesis: A teaching view. Journal of Biological Chemistry, 2021, 296, 100016.	3.4	3
7	A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 159-177.	7.7	20
8	CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Science Translational Medicine, 2021, 13, eabe7104.	12.4	14
9	The Expression and Localisation of G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels Is Differentially Altered in the Hippocampus of Two Mouse Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11106.	4.1	13
10	Overexpression of GSK-31² in Adult Tet-OFF GSK-31² Transgenic Mice, and Not During Embryonic or Postnatal Development, Induces Tau Phosphorylation, Neurodegeneration and Learning Deficits. Frontiers in Molecular Neuroscience, 2020, 13, 561470.	2.9	8
11	InÂVivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports, 2020, 15, 1056-1066.	4.8	56
12	Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Molecular Neurobiology, 2020, 57, 4170-4186.	4.0	6
13	Protein Biomarkers for the Diagnosis of Alzheimer's Disease at Different Stages of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 6749.	4.1	4
14	Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area. Glia, 2020, 68, 2471-2485.	4.9	12
15	Tauopathy Analysis in P301S Mouse Model of Alzheimer Disease Immunized with DNA and MVA Poxvirus-Based Vaccines Expressing Human Full-Length 4R2N or 3RC Tau Proteins. Vaccines, 2020, 8, 127.	4.4	8
16	<i>ACE2</i> is on the X chromosome: could this explain COVID-19 gender differences?. European Heart Journal, 2020, 41, 3095-3095.	2.2	18
17	Differences Between Human and Murine Tau at the N-terminal End. Frontiers in Aging Neuroscience, 2020, 12, 11.	3.4	38
18	A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 456.	4.8	201

#	Article	IF	CITATIONS
19	Differences in structure and function between human and murine tau. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2024-2030.	3.8	22
20	Propagation of Tau via Extracellular Vesicles. Frontiers in Neuroscience, 2019, 13, 698.	2.8	78
21	Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease. Scientific Reports, 2019, 9, 15437.	3.3	63
22	Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE, 2019, 14, e0210864.	2.5	31
23	Peripheral nervous system effects in the PS19 tau transgenic mouse model of tauopathy. Neuroscience Letters, 2019, 698, 204-208.	2.1	9
24	GSK3β overexpression driven by GFAP promoter improves rotarod performance. Brain Research, 2019, 1712, 47-54.	2.2	5
25	Extracellular Monomeric Tau Is Internalized by Astrocytes. Frontiers in Neuroscience, 2019, 13, 442.	2.8	91
26	Lithium as a Treatment for Alzheimer's Disease: The Systems Pharmacology Perspective. Journal of Alzheimer's Disease, 2019, 69, 615-629.	2.6	44
27	Phospho-Tau Changes in the Human CA1 During Alzheimer's Disease Progression. Journal of Alzheimer's Disease, 2019, 69, 277-288.	2.6	29
28	New Beginnings in Alzheimer's Disease: The Most Prevalent Tauopathy. Journal of Alzheimer's Disease, 2018, 64, S529-S534.	2.6	6
29	Human Brain Single Nucleotide Polymorphism: Validation of DNA Sequencing. Journal of Alzheimer's Disease Reports, 2018, 2, 103-109.	2.2	1
30	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	2.9	26
31	Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death and Disease, 2018, 9, 969.	6.3	32
32	Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro. Biomolecular Concepts, 2018, 9, 1-11.	2.2	14
33	Frontotemporal Dementia-Associated N279K Tau Mutation Localizes at the Nuclear Compartment. Frontiers in Cellular Neuroscience, 2018, 12, 202.	3.7	18
34	Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. International Journal of Molecular Sciences, 2018, 19, 645.	4.1	36
35	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 172-183.	0.8	2
36	Tauâ€positive nuclear indentations in P301S tauopathy mice. Brain Pathology, 2017, 27, 314-322.	4.1	17

#	Article	IF	CITATIONS
37	Validation of Suspected Somatic Single Nucleotide Variations in the Brain of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2017, 56, 977-990.	2.6	7
38	Mass spectrometric identification and structural analysis of the third-generation synthetic cannabinoids on the UK market since the 2013 legislative ban. Forensic Toxicology, 2017, 35, 376-388.	2.4	15
39	Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model. Journal of Alzheimer's Disease, 2017, 60, 651-661.	2.6	8
40	Glycogen synthase kinase-3β regulates fractalkine production by altering its trafficking from Golgi to plasma membrane: implications for Alzheimer's disease. Cellular and Molecular Life Sciences, 2017, 74, 1153-1163.	5.4	9
41	Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nature Communications, 2017, 8, 2275.	12.8	21
42	Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins. Frontiers in Neuroscience, 2017, 11, 626.	2.8	43
43	Commentary: Genome-wide association study identifies 74 loci associated with educational attainment. Frontiers in Molecular Neuroscience, 2017, 10, 23.	2.9	4
44	Absence of CX3CR1 impairs the internalization of Tau by microglia. Molecular Neurodegeneration, 2017, 12, 59.	10.8	144
45	Direct Evidence of Internalization of Tau byÂMicroglia In Vitro and InÂVivo. Journal of Alzheimer's Disease, 2016, 50, 77-87.	2.6	165
46	Tau Structures. Frontiers in Aging Neuroscience, 2016, 8, 262.	3.4	86
47	New Features about Tau Function and Dysfunction. Biomolecules, 2016, 6, 21.	4.0	67
48	Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. EMBO Journal, 2016, 35, 1417-1436.	7.8	74
49	Secretion of full-length tau or tau fragments in a cell culture model. Neuroscience Letters, 2016, 634, 63-69.	2.1	21
50	Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience, 2016, 333, 181-192.	2.3	21
51	A Simple Model to Study Tau Pathology. Journal of Experimental Neuroscience, 2016, 10, JEN.S25100.	2.3	23
52	GSK3β Overexpression in Dentate Gyrus Neural Precursor Cells Expands the Progenitor Pool and Enhances Memory Skills. Journal of Biological Chemistry, 2016, 291, 8199-8213.	3.4	23
53	Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opinion on Therapeutic Targets, 2016, 20, 653-661.	3.4	24
54	Alternative neural circuitry that might be impaired in the development of Alzheimer disease. Frontiers in Neuroscience, 2015, 9, 145.	2.8	7

4

#	Article	IF	CITATIONS
55	Excitotoxicity induced by kainic acid provokes glycogen synthase kinase-3 truncation in the hippocampus. Brain Research, 2015, 1611, 84-92.	2.2	3
56	Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease. Human Molecular Genetics, 2015, 24, 5040-5052.	2.9	33
57	TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders. Sub-Cellular Biochemistry, 2015, 76, 375-385.	2.4	10
58	Novel connection between newborn granule neurons and the hippocampal CA2 field. Experimental Neurology, 2015, 263, 285-292.	4.1	59
59	Thermodynamics of the Interaction between Alzheimer's Disease Related Tau Protein and DNA. PLoS ONE, 2014, 9, e104690.	2.5	34
60	Selective alterations of neurons and circuits related to early memory loss in Alzheimerââ,¬â"¢s disease. Frontiers in Neuroanatomy, 2014, 8, 38.	1.7	72
61	Argyrophilic Grain Pathology as a Natural Model of Tau Propagation. Journal of Alzheimer's Disease, 2014, 40, S123-S133.	2.6	14
62	B24 Huntington's Disease As A Tauopathy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A17-A17.	1.9	0
63	Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen. Translational Psychiatry, 2014, 4, e463-e463.	4.8	52
64	Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nature Medicine, 2014, 20, 881-885.	30.7	183
65	Tau Triggers Tear Secretion by Interacting with Muscarinic Acetylcholine Receptors in New Zealand White Rabbits. Journal of Alzheimer's Disease, 2014, 40, S71-S77.	2.6	2
66	Sources of Extracellular Tau and its Signaling. Journal of Alzheimer's Disease, 2014, 40, S7-S15.	2.6	27
67	GSK-3β, a pivotal kinase in Alzheimer disease. Frontiers in Molecular Neuroscience, 2014, 7, 46.	2.9	383
68	Boronate-Tau Mediated Uptake in Neurons. Journal of Alzheimer's Disease, 2014, 40, 143-151.	2.6	0
69	Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK31²/PP1 imbalance. Human Molecular Genetics, 2013, 22, 466-482.	2.9	32
70	GSK-3Î ² overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Molecular Psychiatry, 2013, 18, 451-460.	7.9	117
71	Alzheimer disease-like cellular phenotype of newborn granule neurons can be reversed in GSK-3β-overexpressing mice. Molecular Psychiatry, 2013, 18, 395-395.	7.9	6
72	Changes in tau phosphorylation in hibernating rodents. Journal of Neuroscience Research, 2013, 91, 954-962.	2.9	19

#	Article	IF	CITATIONS
73	Role of Neuroinflammation in Adult Neurogenesis and Alzheimer Disease: Therapeutic Approaches. Mediators of Inflammation, 2013, 2013, 1-9.	3.0	121
74	Dual effects of increased glycogen synthase kinase-3β activity on adult neurogenesis. Human Molecular Genetics, 2013, 22, 1300-1315.	2.9	49
75	The Involvement of Cholinergic Neurons in the Spreading of Tau Pathology. Frontiers in Neurology, 2013, 4, 74.	2.4	20
76	Specific Profile of Tau Isoforms in Argyrophylic Grain Disease. Journal of Experimental Neuroscience, 2013, 7, JEN.S12202.	2.3	4
77	Microtubule Depolymerization and Tau Phosphorylation. Journal of Alzheimer's Disease, 2013, 37, 507-513.	2.6	17
78	Tau and neuron aging. , 2013, 4, 23-8.		8
79	Looking for novel functions of tau. Biochemical Society Transactions, 2012, 40, 653-655.	3.4	16
80	Tau Overexpression Results in Its Secretion via Membrane Vesicles. Neurodegenerative Diseases, 2012, 10, 73-75.	1.4	74
81	Tau Isoform with Three Microtubule Binding Domains is a Marker of New Axons Generated from the Subgranular Zone in the Hippocampal Dentate Gyrus: Implications for Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 29, 921-930.	2.6	35
82	GSK3 and Tau: Two Convergence Points in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S141-S144.	2.6	238
83	Tau Phosphorylation by GSK3 in Different Conditions. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	2.0	89
84	Tau Protein and Adult Hippocampal Neurogenesis. Frontiers in Neuroscience, 2012, 6, 104.	2.8	62
85	GSK3β overexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus. Hippocampus, 2011, 21, 910-922.	1.9	71
86	Tau Phosphorylation. Advances in Neurobiology, 2011, , 73-82.	1.8	2
87	Calpain regulates N-terminal interaction of GSK-3β with 14-3-3ζ, p53 and PKB but not with axin. Neurochemistry International, 2011, 59, 97-100.	3.8	13
88	Expression of frontotemporal dementia with parkinsonism associated to chromosome 17 tau induces specific degeneration of the ventral dentate gyrus and depressive-like behavior in mice. Neuroscience, 2011, 196, 215-227.	2.3	13
89	Different Susceptibility to Neurodegeneration of Dorsal and Ventral Hippocampal Dentate Gyrus: A Study with Transgenic Mice Overexpressing GSK3î². PLoS ONE, 2011, 6, e27262.	2.5	33
90	GSK-3 mouse models to study neuronal apoptosis and neurodegeneration. Frontiers in Molecular Neuroscience, 2011, 4, 45.	2.9	64

#	Article	IF	CITATIONS
91	Tau phosphorylation in hippocampus results in toxic gain-of-function. Biochemical Society Transactions, 2010, 38, 977-980.	3.4	24
92	Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. Molecular and Cellular Biochemistry, 2010, 344, 211-215.	3.1	74
93	Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiology of Disease, 2010, 37, 622-629.	4.4	100
94	Neuronal Models for Studying Tau Pathology. International Journal of Alzheimer's Disease, 2010, 2010, 1-11.	2.0	3
95	Centro de Biologia Molecular "Severo Ochoa― A Center for Basic Research into Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 21, 325-335.	2.6	0
96	Tau Kinase I Overexpression Induces Dentate Gyrus Degeneration. Neurodegenerative Diseases, 2010, 7, 13-15.	1.4	5
97	Intra and Extracellular Protein Interactions with Tau. Current Alzheimer Research, 2010, 7, 670-676.	1.4	11
98	Acute Polyglutamine Expression in Inducible Mouse Model Unravels Ubiquitin/Proteasome System Impairment and Permanent Recovery Attributable to Aggregate Formation. Journal of Neuroscience, 2010, 30, 3675-3688.	3.6	82
99	GSK3: A possible link between beta amyloid peptide and tau protein. Experimental Neurology, 2010, 223, 322-325.	4.1	240
100	Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Review of Neurotherapeutics, 2010, 10, 703-710.	2.8	111
101	GSK3 Inhibitors and Disease. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1024-1029.	2.4	46
102	Function of tau protein in adult newborn neurons. FEBS Letters, 2009, 583, 3063-3068.	2.8	46
103	Calpainâ€mediated truncation of GSKâ€3 in postâ€mortem brain samples. Journal of Neuroscience Research, 2009, 87, 1156-1161.	2.9	18
104	The role of GSK3 in Alzheimer disease. Brain Research Bulletin, 2009, 80, 248-250.	3.0	64
105	Memantine Inhibits Calpain-Mediated Truncation of GSK-3 Induced by NMDA: Implications in Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 843-848.	2.6	18
106	The role of glycogen synthase kinase 3 in the early stages of Alzheimers' disease. FEBS Letters, 2008, 582, 3848-3854.	2.8	77
107	Hippocampal neuronal subpopulations are differentially affected in double transgenic mice overexpressing frontotemporal dementia and parkinsonism linked to chromosome 17 tau and glycogen synthase kinase-31². Neuroscience, 2008, 157, 772-780.	2.3	8
108	Induction of Paclitaxel Resistance by the Kaposi's Sarcoma-Associated Herpesvirus Latent Protein LANA2. Journal of Virology, 2008, 82, 1518-1525.	3.4	18

#	Article	IF	CITATIONS
109	Lithium, a Potential Protective Drug in Alzheimer's Disease. Neurodegenerative Diseases, 2008, 5, 247-249.	1.4	44
110	Binding of Tau Protein to the Ends of ex vivo Paired Helical Filaments. Journal of Alzheimer's Disease, 2008, 13, 177-185.	2.6	2
111	Coenzyme Q Induces Tau Aggregation, Tau Filaments, and Hirano Bodies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 428-434.	1.7	13
112	Tau as a Molecular Marker of Development, Aging and Neurodegenerative Disorders. Current Aging Science, 2008, 1, 56-61.	1.2	16
113	Tau Aggregates and Tau Pathology. Journal of Alzheimer's Disease, 2008, 14, 449-452.	2.6	42
114	Role of Polyglycine Repeats in the Regulation of Glycogen Synthase Kinase Activity. Protein and Peptide Letters, 2008, 15, 586-589.	0.9	1
115	Co-expression of FTDP-17 Human Tau and GSK-3ß (or APPSW) in Transgenic Mice: Induction of Tau Polymerization and Neurodegeneration. , 2008, , 337-342.		0
116	N-terminal Cleavage of GSK-3 by Calpain. Journal of Biological Chemistry, 2007, 282, 22406-22413.	3.4	120
117	Testing the possible inhibition of proteasome by direct interaction with ubiquitylated and aggregated huntingtin. Brain Research Bulletin, 2007, 72, 121-123.	3.0	6
118	Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation. Neuroscience Letters, 2007, 429, 91-94.	2.1	55
119	GSK-3 inhibitors for Alzheimer's disease. Expert Review of Neurotherapeutics, 2007, 7, 1527-1533.	2.8	76
120	A mouse model to study tau pathology related with tau phosphorylation and assembly. Journal of the Neurological Sciences, 2007, 257, 250-254.	0.6	7
121	Tramiprosate, a drug of potential interest for the treatment of Alzheimer's disease, promotes an abnormal aggregation of tau. Molecular Neurodegeneration, 2007, 2, 17.	10.8	71
122	Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO Journal, 2007, 26, 2743-2754.	7.8	59
123	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. European Journal of Neuroscience, 2007, 25, 81-86.	2.6	300
124	The role of the VQIVYK peptide in tau protein phosphorylation. Journal of Neurochemistry, 2007, 103, 1447-1460.	3.9	22
125	Tauopathies. Cellular and Molecular Life Sciences, 2007, 64, 2219-2233.	5.4	253
126	Extracellular tau is toxic to neuronal cells. FEBS Letters, 2006, 580, 4842-4850.	2.8	208

#	Article	IF	CITATIONS
127	In vitro tau fibrillization: Mapping protein regions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 683-692.	3.8	21
128	Cooexpression of FTDP-17 tau and GSK-3Î ² in transgenic mice induce tau polymerization and neurodegeneration. Neurobiology of Aging, 2006, 27, 1258-1268.	3.1	105
129	Characteristics of the binding of thioflavin S to tau paired helical filaments. Journal of Alzheimer's Disease, 2006, 9, 279-285.	2.6	42
130	Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain. Journal of Neurochemistry, 2006, 98, 1585-1596.	3.9	89
131	Chronic lithium administration to FTDPâ€17 tau and GSKâ€3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but preâ€formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 2006, 99, 1445-1455.	3.9	197
132	Tau Phosphorylation, Aggregation, and Cell Toxicity. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-5.	3.0	50
133	Distinct Priming Kinases Contribute to Differential Regulation of Collapsin Response Mediator Proteins by Glycogen Synthase Kinase-3 in Vivo. Journal of Biological Chemistry, 2006, 281, 16591-16598.	3.4	198
134	Full Reversal of Alzheimer's Disease-Like Phenotype in a Mouse Model with Conditional Overexpression of Glycogen Synthase Kinase-3. Journal of Neuroscience, 2006, 26, 5083-5090.	3.6	234
135	Characterization of Alzheimer paired helical filaments by electron microscopy. Microscopy Research and Technique, 2005, 67, 121-125.	2.2	5
136	Neurotoxic dopamine quinone facilitates the assembly of tau into fibrillar polymers. Molecular and Cellular Biochemistry, 2005, 278, 203-212.	3.1	28
137	The Ubiquitin-Proteasome System in Huntington's Disease. Neuroscientist, 2005, 11, 583-594.	3.5	50
138	Effect of quinones on microtubule polymerization: a link between oxidative stress and cytoskeletal alterations in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 472-480.	3.8	38
139	Phosphorylation modulates the alpha-helical structure and polymerization of a peptide from the third tau microtubule-binding repeat. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 16-26.	2.4	22
140	Assembly In Vitro of Tau Protein and its Implications in Alzheimers Disease. Current Alzheimer Research, 2004, 1, 97-101.	1.4	27
141	Biochemical, Ultrastructural, and Reversibility Studies on Huntingtin Filaments Isolated from Mouse and Human Brain. Journal of Neuroscience, 2004, 24, 9361-9371.	3.6	52
142	Glycogen Synthase Kinase-3 Plays a Crucial Role in Tau Exon 10 Splicing and Intranuclear Distribution of SC35. Journal of Biological Chemistry, 2004, 279, 3801-3806.	3.4	122
143	Enhaced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. Neurotoxicity Research, 2004, 6, 463-468.	2.7	41
144	Tau in neurodegenerative diseases: Tau phosphorylation and assembly. Neurotoxicity Research, 2004, 6, 477-482.	2.7	47

#	Article	IF	CITATIONS
145	Quinones Facilitate the Self-Assembly of the Phosphorylated Tubulin Binding Region of Tau into Fibrillar Polymers. Biochemistry, 2004, 43, 2888-2897.	2.5	51
146	Testing the ubiquitin–proteasome hypothesis of neurodegeneration in vivo. Trends in Neurosciences, 2004, 27, 66-69.	8.6	36
147	M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiology of Disease, 2004, 17, 337-348.	4.4	71
148	Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers. Neuroscience Letters, 2004, 357, 143-146.	2.1	64
149	Role of Tau Protein in Both Physiological and Pathological Conditions. Physiological Reviews, 2004, 84, 361-384.	28.8	787
150	O2-05-01 Different ways for tau assembly. Neurobiology of Aging, 2004, 25, S41.	3.1	0
151	GSK-3 dependent phosphoepitopes recognized by PHF-1 and AT-8 antibodies are present in different tau isoforms. Neurobiology of Aging, 2003, 24, 1087-1094.	3.1	40
152	Structural Insights and Biological Effects of Glycogen Synthase Kinase 3-specific Inhibitor AR-A014418. Journal of Biological Chemistry, 2003, 278, 45937-45945.	3.4	451
153	Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. Journal of Alzheimer's Disease, 2003, 5, 301-308.	2.6	172
154	Neuronal Induction of the Immunoproteasome in Huntington's Disease. Journal of Neuroscience, 2003, 23, 11653-11661.	3.6	228
155	α-Helix Structure in Alzheimer's Disease Aggregates of Tau-Proteinâ€. Biochemistry, 2002, 41, 7150-7155.	2.5	110
156	Transgenic Mouse Models with Tau Pathology to Test Therapeutic Agents for Alzheimers Disease. Mini-Reviews in Medicinal Chemistry, 2002, 2, 51-58.	2.4	10
157	Sulfo-glycosaminoglycan content affects PHF-tau solubility and allows the identification of different types of PHFs. Brain Research, 2002, 935, 65-72.	2.2	21
158	Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. Journal of Neurochemistry, 2002, 83, 1529-1533.	3.9	323
159	Heterogeneity of β-Adrenoceptors in Guinea-Pig Brain: Radioligand Binding and Cyclic Nucleotide Generation. Journal of Neurochemistry, 2002, 68, 2610-2617.	3.9	3
160	Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. FEBS Journal, 2002, 269, 1484-1489.	0.2	92
161	FTDP-17 Mutations in tau Transgenic Mice Provoke Lysosomal Abnormalities and Tau Filaments in Forebrain. Molecular and Cellular Neurosciences, 2001, 18, 702-714.	2.2	207
162	Proteasomal-Dependent Aggregate Reversal and Absence of Cell Death in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2001, 21, 8772-8781.	3.6	153

#	Article	IF	CITATIONS
163	Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO Journal, 2001, 20, 27-39.	7.8	783
164	Endothelin Inhibits Histamine-Induced Cyclic AMP Accumulation in Bovine Brain Vessels. Microvascular Research, 2000, 60, 49-54.	2.5	4
165	Endothelin-1 increases isoprenaline-enhanced cyclic AMP levels in cerebral cortex. Regulatory Peptides, 2000, 88, 41-46.	1.9	4
166	Endothelin enhances adenosine and isoprenaline elevated cyclic AMP levels in rat cerebellar slices. Peptides, 1999, 20, 1115-1122.	2.4	2
167	Nuclear localization of β-catenin in adult mouse thalamus correlates with low levels of GSK-3β. NeuroReport, 1999, 10, 2699-2703.	1.2	12
168	Identification of nitric oxide synthases in isolated bovine brain vessels. Neuroscience Research, 1996, 25, 195-199.	1.9	21
169	Protein phosphorylation in the blood-brain barrier. Possible presence of marcks in brain microvessels. Neurochemistry International, 1996, 28, 59-65.	3.8	2
170	Endothelin Stimulates Protein Phosphorylation in Blood–Brain Barrier. Biochemical and Biophysical Research Communications, 1996, 219, 366-369.	2.1	9
171	Nitric Oxide Mediates the PAF-Stimulated Cyclic GMP Production in Hippocampal Slices. Biochemical and Biophysical Research Communications, 1996, 226, 27-31.	2.1	3
172	Regulation of phosphoinositide cycle by intracellular sodium in the blood-brain barrier. Cellular Signalling, 1996, 8, 387-392.	3.6	3
173	Further studies on the mechanism of action of substance P in rat brain, involving selective phosphatidylinositol hydrolysis. Neurochemical Research, 1995, 20, 1147-1153.	3.3	4
174	Involvement of calcium in phosphoinositide metabolism in the blood-brain barrier. Cellular Signalling, 1995, 7, 261-267.	3.6	4
175	Endothelin-1 stimulates myristoylated alanine-rich C-kinase substrate (MARCKS) phosphorylation in rat cerebellar slices. Neuroscience Letters, 1995, 194, 53-56.	2.1	4
176	Dissociation between secretion and protein phosphorylation in agonist-stimulated platelets; action of PCA-4230, a new antithrombotic drug. Thrombosis Research, 1994, 75, 121-132.	1.7	4
177	Natriuretic peptideâ€induced cyclic GMP accumulation in adult guineaâ€pig cerebellar slices. British Journal of Pharmacology, 1994, 113, 216-220.	5.4	7
178	Forskolin and 3â€Isobutylâ€Iâ€Methylxanthine Increase Basal and Sodium Nitroprussideâ€Elevated Cyclic GMP Levels in Adult Guineaâ€Pig Cerebellar Slices. Journal of Neurochemistry, 1994, 62, 2212-2218.	3.9	15
179	Tetrahydroaminoacridine affects the cholinergic function of blood-brain barrier. Life Sciences, 1993, 53, 1165-1172.	4.3	3
180	Adenosine receptorâ€induced second messenger production in adult guineaâ€pig cerebellum. British Journal of Pharmacology, 1993, 110, 1085-1090.	5.4	16

#	Article	IF	CITATIONS
181	Molecular forms of butyrylcholinesterase in rat brain microvessels. Neuroscience Letters, 1990, 120, 46-49.	2.1	11
182	Dual mechanism of phosphatidylinositol hydrolysis by substance P in brain. FEBS Journal, 1988, 172, 547-552.	0.2	13
183	Temperature effects on cholinesterases from rat brain capillaries. Bioscience Reports, 1986, 6, 573-577.	2.4	4
184	Phosphorylation, Microtubule Binding and Aggregation of Tau Protein in Alzheimer's Disease. , 0, , 601-607.		0
185	GSK-3, a Key Player in Alzheimer's Disease. , 0, , 105-124.		0
186	Animal Models with Modified Expression of GSK-3 for the Study of Its Physiology and of Its Implications in Human Pathologies. , 0, , 203-219.		0
187	Specific Peptide from the Novel W-Tau Isoform Inhibits Tau and Amyloid β Peptide Aggregation <i>In Vitro</i> . ACS Chemical Neuroscience, 0, , .	3.5	2