David Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798424/publications.pdf Version: 2024-02-01

ΠΑΝΙΟ ΜΟΡΟΑΝ

#	Article	IF	CITATIONS
1	Principles of CDK regulation. Nature, 1995, 374, 131-134.	27.8	3,168
2	CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors. Annual Review of Cell and Developmental Biology, 1997, 13, 261-291.	9.4	1,937
3	Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell, 1986, 45, 721-732.	28.9	1,189
4	Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science, 1992, 257, 1689-1694.	12.6	1,034
5	A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature, 2000, 407, 395-401.	27.8	1,001
6	Crystal structure of cyclin-dependent kinase 2. Nature, 1993, 363, 595-602.	27.8	979
7	Insulin-like growth factor II receptor as a multifunctional binding protein. Nature, 1987, 329, 301-307.	27.8	878
8	Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. Journal of Virology, 1995, 69, 6705-6711.	3.4	857
9	Targets of the cyclin-dependent kinase Cdk1. Nature, 2003, 425, 859-864.	27.8	835
10	Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution. Science, 2009, 325, 1682-1686.	12.6	821
11	Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature, 1993, 366, 707-710.	27.8	754
12	Exploiting Chemical Libraries, Structure, and Genomics in the Search for Kinase Inhibitors. , 1998, 281, 533-538.		707
13	A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell, 1994, 78, 713-724.	28.9	633
14	Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature, 1995, 374, 283-287.	27.8	430
15	Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Current Biology, 1999, 9, 227-236.	3.9	392
16	Cyclin-dependent kinases: a family portrait. Nature Cell Biology, 2009, 11, 1275-1276.	10.3	381
17	Control of mitosis by changes in the subcellular location of cyclin-B1–Cdk1 and Cdc25C. Current Opinion in Cell Biology, 2000, 12, 658-665.	5.4	350
18	Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature, 2005, 434, 104-108.	27.8	343

#	Article	IF	CITATIONS
19	Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2824-2828.	7.1	336
20	Regulation of the APC and the exit from mitosis. Nature Cell Biology, 1999, 1, E47-E53.	10.3	334
21	Finishing mitosis, one step at a time. Nature Reviews Molecular Cell Biology, 2007, 8, 894-903.	37.0	309
22	A Late Mitotic Regulatory Network Controlling Cyclin Destruction in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 1998, 9, 2803-2817.	2.1	295
23	c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism Genes and Development, 1995, 9, 1505-1517.	5.9	293
24	Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nature Medicine, 2007, 13, 820-827.	30.7	283
25	Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proceedings of the United States of America, 2008, 105, 1442-1447.	7.1	274
26	Nuclear Localization of Cyclin B1 Controls Mitotic Entry After DNA Damage. Journal of Cell Biology, 1998, 141, 875-885.	5.2	271
27	Multiple modes of ligand recognition: Crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins: Structure, Function and Bioinformatics, 1995, 22, 378-391.	2.6	258
28	Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells Journal of Cell Biology, 1996, 134, 963-970.	5.2	255
29	Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO Journal, 1992, 11, 3995-4005.	7.8	255
30	Phosphoregulation of Phase Separation by the SARS-CoV-2ÂN Protein Suggests a Biophysical Basis for its Dual Functions. Molecular Cell, 2020, 80, 1092-1103.e4.	9.7	253
31	Activation of human cyclin-dependent kinases in vitro Molecular Biology of the Cell, 1992, 3, 571-582.	2.1	249
32	Mitosis-specific phosphorylation of p60c-src by p34cdc2-associated protein kinase. Cell, 1989, 57, 775-786.	28.9	247
33	Acute insulin action requires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 41-45.	7.1	238
34	The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Current Biology, 1998, 8, 497-507.	3.9	233
35	Alternative mechanisms of CAK assembly require an assembly factor or an Activating Kinase. Cell, 1995, 83, 47-57.	28.9	230
36	Association of p60c-src with endosomal membranes in mammalian fibroblasts Journal of Cell Biology, 1992, 118, 321-333.	5.2	229

#	Article	IF	CITATIONS
37	Structural basis for selective inhibition of Src family kinases by PP1. Chemistry and Biology, 1999, 6, 671-678.	6.0	227
38	Sequential E2s Drive Polyubiquitin Chain Assembly on APC Targets. Cell, 2007, 130, 127-139.	28.9	227
39	PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3834-3838.	7.1	220
40	Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature, 2011, 480, 128-131.	27.8	202
41	Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase Molecular and Cellular Biology, 1994, 14, 7265-7275.	2.3	198
42	The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes and Development, 1997, 11, 2645-2657.	5.9	194
43	A Cyclin-Dependent Kinase-Activating Kinase (CAK) in Budding Yeast Unrelated to Vertebrate CAK. Science, 1996, 273, 1714-1717.	12.6	174
44	Positive feedback sharpens the anaphase switch. Nature, 2008, 454, 353-357.	27.8	173
45	Cdc14 activates Cdc15 to promote mitotic exit in budding yeast. Current Biology, 2000, 10, 615-618.	3.9	163
46	Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science, 1994, 266, 1388-1391.	12.6	162
47	Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 328-332.	7.1	154
48	Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes and Development, 1999, 13, 1936-1949.	5.9	148
49	The receptor for insulin-like growth factor II mediates an insulin-like response EMBO Journal, 1987, 6, 3367-3371.	7.8	140
50	Effects of Phosphorylation by CAK on Cyclin Binding by CDC2 and CDK2. Molecular and Cellular Biology, 1995, 15, 345-350.	2.3	139
51	Dynamics of Cdk1 Substrate Specificity during the Cell Cycle. Molecular Cell, 2011, 42, 610-623.	9.7	139
52	Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4651-4655.	7.1	136
53	An architectural map of the anaphase-promoting complex. Genes and Development, 2006, 20, 449-460.	5.9	135
54	Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae Molecular and Cellular Biology, 1993, 13, 5290-5300.	2.3	132

#	Article	IF	CITATIONS
55	Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Molecular Cell, 2016, 64, 12-23.	9.7	132
56	The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nature Cell Biology, 2002, 4, 880-887.	10.3	121
57	The APC Subunit Doc1 Promotes Recognition of the Substrate Destruction Box. Current Biology, 2005, 15, 11-18.	3.9	112
58	Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nature Cell Biology, 2007, 9, 106-112.	10.3	110
59	The APC/C Subunit Mnd2/Apc15 Promotes Cdc20 Autoubiquitination and Spindle Assembly Checkpoint Inactivation. Molecular Cell, 2012, 47, 921-932.	9.7	103
60	Protein kinase regulation: insights from crystal structure analysis. Current Opinion in Cell Biology, 1994, 6, 239-246.	5.4	102
61	Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Molecular and Cellular Biology, 1994, 14, 7265-7275.	2.3	99
62	Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO Journal, 1994, 13, 4745-56.	7.8	93
63	Interactions of the receptor for insulin-like growth factor II with mannose-6-phosphate and antibodies to the mannose-6-phosphate receptor. Biochemical and Biophysical Research Communications, 1987, 149, 600-606.	2.1	92
64	The dynamics of cyclin dependent kinase structure. Current Opinion in Cell Biology, 1996, 8, 767-772.	5.4	91
65	A Membrane-Anchored Cytoplasmic Domain of the Human Insulin Receptor Mediates a Constitutively Elevated Insulin-Independent Uptake of 2-Deoxyglucose*. Molecular Endocrinology, 1987, 1, 15-24.	3.7	90
66	Mapping surface structures of the human insulin receptor with monoclonal antibodies: localization of main immunogenic regions to the receptor kinase domain. Biochemistry, 1986, 25, 1364-1371.	2.5	88
67	Analysis of Activator-Binding Sites on the APC/C Supports a Cooperative Substrate-Binding Mechanism. Molecular Cell, 2009, 34, 68-80.	9.7	88
68	Catalysis of Lysine 48-Specific Ubiquitin Chain Assembly by Residues in E2 and Ubiquitin. Molecular Cell, 2010, 39, 548-559.	9.7	80
69	Purification and characterization of the receptor for insulin-like growth factor I. Biochemistry, 1986, 25, 5560-5564.	2.5	79
70	Ran-independent nuclear import of cyclin B1-Cdc2 by importin Â. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7938-7943.	7.1	77
71	A Coupled Chemical-Genetic and Bioinformatic Approach to Polo-like Kinase Pathway Exploration. Chemistry and Biology, 2007, 14, 1261-1272.	6.0	75
72	Kaposi's Sarcoma-Associated Herpesvirus K-bZIP Protein Is Phosphorylated by Cyclin-Dependent Kinases. Journal of Virology, 2001, 75, 3175-3184.	3.4	73

#	Article	IF	CITATIONS
73	Cdk1-Dependent Destruction of Eco1 Prevents Cohesion Establishment after S Phase. Molecular Cell, 2011, 42, 378-389.	9.7	72
74	Evolution of Ime2 Phosphorylation Sites on Cdk1 Substrates Provides a Mechanism to Limit the Effects of the Phosphatase Cdc14 in Meiosis. Molecular Cell, 2007, 25, 689-702.	9.7	70
75	Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nature Structural and Molecular Biology, 2013, 20, 194-201.	8.2	70
76	Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nature Structural and Molecular Biology, 1996, 3, 849-855.	8.2	69
77	Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development. Developmental Cell, 2016, 36, 344-352.	7.0	69
78	Reciprocal Activation by Cyclin-Dependent Kinases 2 and 7 Is Directed by Substrate Specificity Determinants outside the T Loop. Molecular and Cellular Biology, 2001, 21, 88-99.	2.3	68
79	Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. Journal of Cell Biology, 2014, 207, 23-39.	5.2	68
80	Cak1 Is Required for Kin28 Phosphorylation and Activation In Vivo. Molecular and Cellular Biology, 1998, 18, 6365-6373.	2.3	66
81	Purification and Crystallization of Human Cyclin-dependent Kinase 2. Journal of Molecular Biology, 1993, 230, 1317-1319.	4.2	65
82	Cdc37 Promotes the Stability of Protein Kinases Cdc28 and Cak1. Molecular and Cellular Biology, 2000, 20, 749-754.	2.3	61
83	Identification of Yeast IQGAP (lqg1p) as an Anaphase-Promoting-Complex Substrate and Its Role in Actomyosin-Ring-Independent Cytokinesis. Molecular Biology of the Cell, 2007, 18, 5139-5153.	2.1	59
84	Modulation of the Mitotic Regulatory Network by APC-Dependent Destruction of the Cdh1 Inhibitor Acm1. Molecular Cell, 2008, 30, 437-446.	9.7	59
85	Inhibitor Scaffolds as New Allele Specific Kinase Substrates. Journal of the American Chemical Society, 2002, 124, 12118-12128.	13.7	56
86	Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5101-5105.	7.1	52
87	Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes. Journal of Biological Chemistry, 2011, 286, 45186-45196.	3.4	52
88	Structural basis of human separase regulation by securin and CDK1–cyclin B1. Nature, 2021, 596, 138-142.	27.8	51
89	Suppression of c-Src Activity by C-Terminal Src Kinase Involves the c-Src SH2 and SH3 Domains: Analysis with <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1993, 13, 5290-5300.	2.3	50
90	Purification and characterization of the human brain insulin receptor. Journal of Biological Chemistry, 1986, 261, 3753-7.	3.4	50

#	Article	IF	CITATIONS
91	Distinct sub-populations of the retinoblastoma protein show a distinct pattern of phosphorylation. EMBO Journal, 1994, 13, 118-27.	7.8	49
92	Cell cycle control in normal and neoplastic cells. Current Opinion in Genetics and Development, 1992, 2, 33-37.	3.3	45
93	Identification of a monoclonal antibody which can distinguish between two distinct species of the type I receptor for insulin-like growth factor. Biochemical and Biophysical Research Communications, 1986, 138, 1341-1347.	2.1	43
94	Activation of the APC/C Ubiquitin Ligase by Enhanced E2 Efficiency. Current Biology, 2014, 24, 1556-1562.	3.9	41
95	Ubiquitination of Cdc20 by the APC Occurs through an Intramolecular Mechanism. Current Biology, 2011, 21, 1870-1877.	3.9	40
96	Separase Biosensor Reveals that Cohesin Cleavage Timing Depends on Phosphatase PP2ACdc55 Regulation. Developmental Cell, 2012, 23, 124-136.	7.0	39
97	Sgo1 recruits PP2A to chromosomes to ensure sister chromatid bi-orientation in mitosis. Journal of Cell Science, 2014, 127, 4974-83.	2.0	39
98	A Novel Destruction Sequence Targets the Meiotic Regulator Spo13 for Anaphase-promoting Complex-dependent Degradation in Anaphase I. Journal of Biological Chemistry, 2007, 282, 19710-19715.	3.4	37
99	Insulin and insulinlike growth factor receptors and responses in cultured human muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 1986, 251, E611-E615.	3.5	36
100	The Anaphase-promoting Complex Promotes Actomyosin-Ring Disassembly during Cytokinesis in Yeast. Molecular Biology of the Cell, 2009, 20, 1201-1212.	2.1	33
101	Analysis of intracellular protein function by antibody injection. Trends in Immunology, 1988, 9, 84-88.	7.5	31
102	Staurosporine-Derived Inhibitors Broaden the Scope of Analog-Sensitive Kinase Technology. Journal of the American Chemical Society, 2013, 135, 18153-18159.	13.7	31
103	Linking functional domains of the human insulin receptor with the bacterial aspartate receptor Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8137-8141.	7.1	30
104	[53] Production of p60c-src by baculovirus expression and immunoaffinity purification. Methods in Enzymology, 1991, 200, 645-660.	1.0	30
105	Enzymology of the Anaphaseâ€Promoting Complex. Methods in Enzymology, 2005, 398, 219-230.	1.0	30
106	Functionally Distinct Isoforms of Cik1 Are Differentially Regulated by APC/C-Mediated Proteolysis. Molecular Cell, 2009, 33, 581-590.	9.7	30
107	PLATE BINDING ASSAY FOR MONOCLONAL ANTI–RECEPTOR ANTIBODIES. Endocrinology, 1985, 116, 1224-1226.	2.8	25
108	Mechanisms of ubiquitin transfer by the anaphase-promoting complex. Journal of Biology, 2009, 8, 92.	2.7	24

#	Article	IF	CITATIONS
109	Oscillation sensation. Nature, 2002, 418, 495-496.	27.8	23
110	Quantitative framework for ordered degradation of APC/C substrates. BMC Biology, 2015, 13, 96.	3.8	23
111	Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site. Nature Communications, 2019, 10, 5189.	12.8	23
112	The receptor for insulin-like growth factor II mediates an insulin-like response. EMBO Journal, 1987, 6, 3367-71.	7.8	23
113	Cyclin-Specific Control of Ribosomal DNA Segregation. Molecular and Cellular Biology, 2008, 28, 5328-5336.	2.3	20
114	Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Current Biology, 2017, 27, 2849-2855.e2.	3.9	18
115	Cdk1-dependent phosphorylation of lqg1 governs actomyosin ring assembly prior to cytokinesis. Journal of Cell Science, 2014, 127, 1128-37.	2.0	17
116	Effects of covalently linked insulin dimers on receptor kinase activity and receptor down regulation. FEBS Letters, 1984, 170, 360-364.	2.8	14
117	Under arrest at atomic resolution. Nature, 1996, 382, 295-296.	27.8	14
118	The Role of Self-association in Fin1 Function on the Mitotic Spindle. Journal of Biological Chemistry, 2007, 282, 32138-32143.	3.4	9
119	Co-activator independent differences in how the metaphase and anaphase APC/C recognise the same substrate. Biology Open, 2014, 3, 904-912.	1.2	9
120	Polyanions provide selective control of APC/C interactions with the activator subunit. Nature Communications, 2019, 10, 5807.	12.8	9
121	The pseudosubstrate inhibitor Acm1 inhibits the anaphase-promoting complex/cyclosome by combining high-affinity activator binding with disruption of Doc1/Apc10 function. Journal of Biological Chemistry, 2019, 294, 17249-17261.	3.4	8
122	Control of eukaryotic cell cycle progression by phosphorylation of cyclin-dependent kinases. Cancer Journal From Scientific American, 1998, 4 Suppl 1, S77-83.	0.8	8
123	The Hidden Rhythms of the Dividing Cell. Cell, 2010, 141, 224-226.	28.9	7
124	Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription. Current Biology, 2022, 32, 256-263.e4.	3.9	7
125	CAK in TFIIH: crucial connection or confounding coincidence?. Biochimica Et Biophysica Acta: Reviews on Cancer, 1996, 1288, O7-O10.	7.4	5
126	The D Box Meets Its Match. Molecular Cell, 2013, 50, 609-610.	9.7	5

#	Article	IF	CITATIONS
127	An E2 Accessory Domain Increases Affinity for the Anaphase-promoting Complex and Ensures E2 Competition. Journal of Biological Chemistry, 2015, 290, 24614-24625.	3.4	5
128	Single-molecule analysis of specificity and multivalency in binding of short linear substrate motifs to the APC/C. Nature Communications, 2022, 13, 341.	12.8	5
129	The Human Insulin Receptor Cdna: A New Tool to study the Function of this Receptor. Journal of Receptors and Signal Transduction, 1987, 7, 377-404.	1.2	1
130	Tetratricopeptide repeats in the anaphaseâ€promoting complex provide multiple activator binding sites. FASEB Journal, 2008, 22, 636.2.	0.5	0
131	Polyubiquitination determinants on Ubc1, an APCâ€dependent E2. FASEB Journal, 2008, 22, 605.4.	0.5	0