
Nadezda Zikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmospheric Chemistry and Physics, 2011, 11, 5505-5538.	4.9	214
2	Laboratory assessment of low-cost PM monitors. Journal of Aerosol Science, 2016, 102, 29-40.	3.8	150
3	On the source contribution to Beijing PM2.5 concentrations. Atmospheric Environment, 2016, 134, 84-95.	4.1	146
4	Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmospheric Chemistry and Physics, 2011, 11, 12007-12036.	4.9	110
5	Ultrafine particles in four European urban environments: Results from a new continuous long-term monitoring network. Atmospheric Environment, 2016, 136, 68-81.	4.1	92
6	Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements. Journal of Aerosol Science, 2017, 105, 24-34.	3.8	81
7	Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO ₂ (nano) particles. Occupational and Environmental Medicine, 2016, 73, 110-118.	2.8	76
8	Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. Sensors, 2017, 17, 1922.	3.8	71
9	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	3.1	65
10	Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. Journal of Breath Research, 2016, 10, 016004.	3.0	59
11	Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO ₂ production workers. Nanotoxicology, 2017, 11, 52-63.	3.0	51
12	Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO ₂ particles: a cross-sectional study. Journal of Breath Research, 2015, 9, 036008.	3.0	50
13	Hourly land-use regression models based on low-cost PM monitor data. Environmental Research, 2018, 167, 7-14.	7.5	45
14	Variations in tropospheric submicron particle size distributions across the European continent 2008–2009. Atmospheric Chemistry and Physics, 2014, 14, 4327-4348.	4.9	41
15	Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution. Atmospheric Measurement Techniques, 2016, 9, 1545-1551.	3.1	39
16	Precipitation scavenging of aerosol particles at a rural site in the Czech Republic. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 27343.	1.6	33
17	Size-Resolved Penetration Through High-Efficiency Filter Media Typically Used for Aerosol Sampling. Aerosol Science and Technology, 2015, 49, 239-249.	3.1	31
18	Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO ₂ nanoparticles. Journal of Breath Research, 2016, 10, 036004.	3.0	31

NADEZDA ZIKOVA

#	Article	IF	CITATIONS
19	Seasonality of new particle formation in Vienna, Austria – Influence of air mass origin and aerosol chemical composition. Atmospheric Environment, 2015, 118, 118-126.	4.1	27
20	Comparison of atmospheric new particle formation events in three Central European cities. Atmospheric Environment, 2018, 178, 191-197.	4.1	27
21	Efficient and Accurate Theoretical Methods To Investigate Anion-Ï€ Interactions in Protein Model Structures. Journal of Physical Chemistry B, 2013, 117, 3315-3322.	2.6	26
22	Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Reviews on Environmental Health, 2017, 32, 193-200.	2.4	26
23	Size-Resolved Penetration of Filtering Materials from CE-Marked Filtering Facepiece Respirators. Aerosol and Air Quality Research, 2017, 17, 1305-1315.	2.1	21
24	Trajectory-Based Models and Remote Sensing for Biomass Burning Assessment in Bangladesh. Aerosol and Air Quality Research, 2017, 17, 465-475.	2.1	18
25	Long-Term Measurement of Aerosol Number Size Distributions at Rural Background Station KoÅjetice. Aerosol and Air Quality Research, 2013, 13, 1464-1474.	2.1	17
26	Shrinkage of Newly Formed Particles in an Urban Environment. Aerosol and Air Quality Research, 2015, 15, 1313-1324.	2.1	17
27	Deposition of suspended fine particulate matter in a library. Heritage Science, 2013, 1, .	2.3	16
28	Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe. Atmosphere, 2019, 10, 687.	2.3	16
29	Characterization of Equivalent Black Carbon at a regional background site in Central Europe: Variability and source apportionmentâ^†. Environmental Pollution, 2020, 260, 113771.	7.5	16
30	Transformations of Aerosol Particles from an Outdoor to Indoor Environment. Aerosol and Air Quality Research, 2017, 17, 653-665.	2.1	15
31	Mass absorption cross-section and absorption enhancement from long term black and elemental carbon measurements: A rural background station in Central Europe. Science of the Total Environment, 2021, 794, 148365.	8.0	14
32	Nanoparticles found in superheated steam: a quantitative analysis of possible heterogeneous condensation nuclei. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 228, 186-193.	1.4	9
33	Activation of atmospheric aerosols in fog and low clouds. Atmospheric Environment, 2020, 230, 117490.	4.1	8
34	On the use of the field Sunset semi-continuous analyzer to measure equivalent black carbon concentrations. Aerosol Science and Technology, 2016, 50, 284-296.	3.1	7
35	Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM ₁ measured at a rural background site in central Europe. Atmospheric Chemistry and Physics, 2022, 22, 5829-5858.	4.9	7
36	Markers of oxidative stress in exhaled breath condensate are significantly increased in workers exposed to aerosol containing TiO2 nanoparticles. Toxicology Letters, 2014, 229, S12.	0.8	4

NADEZDA ZIKOVA

#	Article	IF	CITATIONS
37	Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry. Environmental Science and Pollution Research, 2020, 27, 38631-38643.	5.3	4
38	Atmospheric aerosol growth rates at different background station types. Environmental Science and Pollution Research, 2021, 28, 13352-13364.	5.3	4
39	Elemental and microbiota content in indoor and outdoor air using recuperation unit filters. Science of the Total Environment, 2021, 789, 147903.	8.0	4
40	Aerosol Distribution in The Planetary Boundary Layer Aloft a Residential Area. IOP Conference Series: Earth and Environmental Science, 2016, 44, 052017.	0.3	3
41	Annual precipitation cycle in regional climate models: the influence of horizontal resolution. Theoretical and Applied Climatology, 2013, 112, 521-533.	2.8	1