Fuqiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798304/publications.pdf

Version: 2024-02-01

		126907	133252
63	3,644	33	59
papers	citations	h-index	g-index
(2	(2	63	2504
63	63	63	3594
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. Chemosphere, 2002, 47, 981-989.	8.2	237
2	Highly efficient sunlight-driven reduction of Cr(VI) by TiO2@NH2-MIL-88B(Fe) heterostructures under neutral conditions. Applied Catalysis B: Environmental, 2019, 251, 229-239.	20.2	206
3	Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol A degradation. Applied Catalysis B: Environmental, 2019, 242, 238-248.	20.2	186
4	Facile one-step fabrication of carboxymethyl cellulose based hydrogel for highly efficient removal of Cr(VI) under mild acidic condition. Chemical Engineering Journal, 2019, 369, 641-651.	12.7	185
5	Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Science of the Total Environment, 2019, 646, 265-279.	8.0	171
6	Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling. Water Research, 2011, 45, 1177-1188.	11.3	159
7	Adsorption performances and mechanisms of the newly synthesized N,Nâ \in 2-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. Journal of Hazardous Materials, 2009, 167, 589-596.	12.4	127
8	Supported Atomically-Precise Gold Nanoclusters for Enhanced Flow-through Electro-Fenton. Environmental Science & Environmental	10.0	113
9	Electroactive Modified Carbon Nanotube Filter for Simultaneous Detoxification and Sequestration of Sb(III). Environmental Science & Echnology, 2019, 53, 1527-1535.	10.0	111
10	High Adsorption of Sulfamethoxazole by an Amine-Modified Polystyrene–Divinylbenzene Resin and Its Mechanistic Insight. Environmental Science & Technology, 2016, 50, 10015-10023.	10.0	108
11	Nitrogen-doped chitosan-Fe(III) composite as a dual-functional material for synergistically enhanced co-removal of Cu(II) and Cr(VI) based on adsorption and redox. Chemical Engineering Journal, 2016, 306, 579-587.	12.7	107
12	Confinement of CoP Nanoparticles in Nitrogenâ€Doped Yolkâ€Shell Porous Carbon Polyhedron for Ultrafast Catalytic Oxidation. Advanced Functional Materials, 2020, 30, 2003947.	14.9	97
13	Insight into Highly Efficient Coremoval of Copper and <i>p</i> Polyamine Chelating Resin from Aqueous Media: Competition and Enhancement Effect upon Site Recognition. Environmental Science & Enhancement Effect upon Site Recognition. Environmental Science & Enhancement Effect upon Site Recognition.	10.0	93
14	Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401, 126020.	12.7	87
15	OCNTs encapsulating Fe-Co PBA as efficient chainmail-like electrocatalyst for enhanced heterogeneous electro-Fenton reaction. Applied Catalysis B: Environmental, 2020, 269, 118785.	20.2	84
16	Adsorption of divalent heavy metal ions onto IDA-chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms. Talanta, 2010, 81, 424-432.	5.5	83
17	Recyclable Nanocomposite of Flowerlike MoS ₂ @Hybrid Acid-Doped PANI Immobilized on Porous PAN Nanofibers for the Efficient Removal of Cr(VI). ACS Sustainable Chemistry and Engineering, 2018, 6, 447-456.	6.7	72
18	Enhanced activation of peroxymonosulfate with metal-substituted hollow MxCo3-xS4 polyhedrons for superfast degradation of sulfamethazine. Chemical Engineering Journal, 2020, 384, 123302.	12.7	72

#	Article	IF	CITATIONS
19	A novel 3D nanofibrous aerogel-based MoS2@Co3S4 heterojunction photocatalyst for water remediation and hydrogen evolution under simulated solar irradiation. Applied Catalysis B: Environmental, 2020, 264, 118514.	20.2	70
20	Insight into the efficient co-removal of Cr(VI) and Cr(III) by positively charged UiO-66-NH2 decorated ultrafiltration membrane. Chemical Engineering Journal, 2021, 404, 126546.	12.7	69
21	Carbonate-enhanced catalytic activity and stability of Co3O4 nanowires for 1O2-driven bisphenol A degradation via peroxymonosulfate activation: Critical roles of electron and proton acceptors. Journal of Hazardous Materials, 2020, 393, 122395.	12.4	68
22	Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates. Environmental Pollution, 2016, 214, 524-531.	7.5	67
23	Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics. Chemical Engineering Journal, 2011, 173, 106-114.	12.7	65
24	High efficient removal of Cu(II) by a chelating resin from strong acidic solutions: Complex formation and DFT certification. Chemical Engineering Journal, 2013, 222, 240-247.	12.7	64
25	Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin. Scientific Reports, 2015, 5, 9944.	3.3	50
26	Bridging effects behind the coadsorption of copper and sulfamethoxazole by a polyamine-modified resin. Chemical Engineering Journal, 2019, 362, 422-429.	12.7	48
27	Rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange. Journal of Hazardous Materials, 2014, 272, 102-111.	12.4	44
28	High-efficient technique to simultaneous removal of Cu(II), Ni(II) and tannic acid with magnetic resins: Complex mechanism behind integrative application. Chemical Engineering Journal, 2015, 263, 83-91.	12.7	40
29	A novel pyridine based polymer for highly efficient separation of nickel from high-acidity and high-concentration cobalt solutions. Chemical Engineering Journal, 2018, 334, 995-1005.	12.7	39
30	Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter. Environmental Pollution, 2019, 251, 72-80.	7.5	38
31	Constructing surface micro-electric fields on hollow single-atom cobalt catalyst for ultrafast and anti-interference advanced oxidation. Applied Catalysis B: Environmental, 2022, 305, 121057.	20.2	38
32	Efficient separation and high selectivity for nickel from cobalt-solution by a novel chelating resin: Batch, column and competition investigation. Chemical Engineering Journal, 2012, 195-196, 31-39.	12.7	37
33	Multi-networked nanofibrous aerogel supported by heterojunction photocatalysts with excellent dispersion and stability for photocatalysis. Journal of Materials Chemistry A, 2019, 7, 7053-7064.	10.3	35
34	Hierarchical Iron Phosphides Composite Confined in Ultrathin Carbon Layer as Effective Heterogeneous Electroâ€Fenton Catalyst with Prominent Stability and Catalytic Activity. Advanced Functional Materials, 2021, 31, 2106311.	14.9	34
35	Enhanced removal of Cu(II) and Ni(II) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism. Journal of Hazardous Materials, 2015, 287, 234-242.	12.4	33
36	Boosting Cr(VI) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: Performance and mechanism. Science of the Total Environment, 2019, 695, 133926.	8.0	32

#	Article	IF	Citations
37	Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system. Water Research, 2020, 171, 115375.	11.3	32
38	Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites. Journal of Hazardous Materials, 2020, 388, 121776.	12.4	32
39	Comparison of the adsorption behaviors for methylene blue on two renewable gels with different physical state. Environmental Pollution, 2019, 254, 113117.	7.5	30
40	A high-flux and anti-interference dual-functional membrane for effective removal of Pb(II) from natural water. Journal of Hazardous Materials, 2020, 384, 121492.	12.4	30
41	Preparation and characterization of polymerâ€based spherical activated carbons with tailored pore structure. Journal of Applied Polymer Science, 2008, 109, 1692-1698.	2.6	28
42	Efficient and synergistic removal of tetracycline and Cu(II) using novel magnetic multi-amine resins. Scientific Reports, 2018, 8, 4762.	3.3	24
43	Magnetic Fe ₃ O ₄ @polyaniline nanocomposites with a tunable core–shell structure for ultrafast microwave-energy-driven reduction of Cr(<scp>vi</scp>). Environmental Science: Nano, 2018, 5, 487-496.	4.3	24
44	A recyclable nanosheet of Mo/N-doped TiO2 nanorods decorated on carbon nanofibers for organic pollutants degradation under simulated sunlight irradiation. Chemosphere, 2019, 215, 280-293.	8.2	24
45	Insight into selective removal of copper from high-concentration nickel solutions with XPS and DFT: New technique to prepare 5N-nickel with chelating resin. Journal of Environmental Sciences, 2016, 48, 34-44.	6.1	23
46	TAP/GMA@CN metal-chelating membrane for enhanced and efficient capture of Cu(II). Journal of Membrane Science, 2019, 570-571, 362-370.	8.2	22
47	Ultra-rapid detoxification of Sb(III) using a flow-through electro-fenton system. Chemosphere, 2020, 245, 125604.	8.2	21
48	Insight into Cu(II) Adsorption on Polyamine Resin in the Presence of HEDP by Tracking the Evolution of Amino Groups and Cu(II)–HEDP Complexes. ACS Sustainable Chemistry and Engineering, 2019, 7, 5256-5263.	6.7	20
49	A green and energy-saving microwave-based method to prepare magnetic carbon beads for catalytic wet peroxide oxidation. Journal of Cleaner Production, 2019, 215, 232-244.	9.3	17
50	One-step phosphite removal by an electroactive CNT filter functionalized with TiO2/CeOx nanocomposites. Science of the Total Environment, 2020, 710, 135514.	8.0	17
51	Impactful modulation of micro-structures of acid-resistant picolylamine-based chelate resins for efficient separation of heavy metal cations from strongly acidic media. Chemical Engineering Journal, 2021, 420, 129684.	12.7	16
52	Highly selective removal of Ni(II) from plating rinsing wastewaters containing [Ni-xNH3-yP2O7]n complexes using N-chelating resins. Journal of Hazardous Materials, 2020, 398, 122960.	12.4	15
53	Redox-Active Nanohybrid Filter for Selective Recovery of Gold from Water. ACS ES&T Engineering, 2021, 1, 1342-1350.	7.6	15
54	Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite. Chemosphere, 2021, 274, 129790.	8.2	15

#	Article	IF	CITATIONS
55	Identifying and Monitoring the Landfill Leachate Contamination in Groundwater with SEC-DAD-FLD-OCD and a Portable Fluorescence Spectrometer. ACS ES&T Water, 2022, 2, 165-173.	4.6	15
56	Facile preparation of acid-resistant magnetite particles for removal of Sb(â¢) from strong acidic solution. Science and Technology of Advanced Materials, 2016, 17, 80-88.	6.1	14
57	Sequential separation of Cu(II)/Ni(II)/Fe(II) from strong-acidic pickling wastewater with a two-stage process based on a bi-pyridine chelating resin. Chinese Chemical Letters, 2021, 32, 2792-2796.	9.0	12
58	Adsorption selectivity of salicylic acid and 5-sulfosalicylic acid onto hypercrosslinked polymeric adsorbents. Frontiers of Environmental Science and Engineering in China, 2007, 1, 73-78.	0.8	9
59	Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater. Journal of Hazardous Materials, 2016, 312, 192-199.	12.4	7
60	Plasmonic Bi NP-accelerated interfacial charge transfer for enhanced solar-driven ciprofloxacin mineralization. Environmental Science: Nano, 2022, 9, 349-360.	4.3	7
61	Efficient removal of Cr(III)-carboxyl complex from neutral and high-salinity wastewater by nitrogen doped biomass-based composites. Chinese Chemical Letters, 2023, 34, 107180.	9.0	3
62	<scp>Ultralowâ€Energyâ€Barrier H₂O₂</scp> Dissociation on Coordinatively Unsaturated Metal Centers in Binary <scp>Ceâ€Fe</scp> Prussian Blue Analogue for Efficient and Stable <scp>Photoâ€Fenton</scp> Catalysis. Energy and Environmental Materials, 2023, 6, .	12.8	3
63	A Dual-Functional Electroactive Filter Towards Simultaneously Sb(III) Oxidation and Sequestration. Journal of Visualized Experiments, 2019, , .	0.3	0