Bianca M Poggianti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1797656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GASP XXXVIII: The LOFAR-MeerKAT-VLA View on the Nonthermal Side of a Jellyfish Galaxy. Astrophysical Journal, 2022, 924, 64.	4.5	19
2	Observing Ram Pressure at Work in Intermediate Redshift Clusters with MUSE: The Case of Abell 2744 and Abell 370. Astrophysical Journal, 2022, 925, 4.	4.5	18
3	The Relevance of Ram Pressure Stripping for the Evolution of Blue Cluster Galaxies as Seen at Optical Wavelengths. Astrophysical Journal, 2022, 927, 91.	4.5	16
4	GASP XXXVII: The Most Extreme Jellyfish Galaxies Compared with Other Disk Galaxies in Clusters, an H i Study. Astrophysical Journal, 2022, 927, 39.	4.5	6
5	Exploring the AGN–Ram Pressure Stripping Connection in Local Clusters. Astrophysical Journal, 2022, 927, 130.	4.5	34
6	Post-starburst Galaxies in the Centers of Intermediate-redshift Clusters. Astrophysical Journal, 2022, 930, 43.	4.5	22
7	Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206. Nature Astronomy, 2021, 5, 159-168.	10.1	38
8	GASP. XXXII. Measuring the Diffuse Ionized Gas Fraction in Ram-pressure-stripped Galaxies. Astrophysical Journal, 2021, 907, 22.	4.5	13
9	GAMA/XXL: X-ray point sources in low-luminosity galaxies in the GAMA G02/XXL-N field. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3101-3112.	4.4	0
10	GASP XXXIV: Unfolding the Thermal Side of Ram Pressure Stripping in the Jellyfish Galaxy JO201. Astrophysical Journal, 2021, 911, 144.	4.5	24
11	GASP. XXXIII. The Ability of Spatially Resolved Data to Distinguish among the Different Physical Mechanisms Affecting Galaxies in Low-density Environments. Astrophysical Journal, 2021, 914, 27.	4.5	21
12	The GOGREEN survey: transition galaxies and the evolution of environmental quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 157-174.	4.4	15
13	Two striking head–tail galaxies in the galaxy cluster IIZW108: insights into transition to turbulence, magnetic fields, and particle re-acceleration. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5326-5344.	4.4	14
14	The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0 < z < 1.4. Astrophysical Journal, 2021, 920, 32.	4.5	5
15	Evidence for Mixing between ICM and Stripped ISM by the Analysis of the Gas Metallicity in the Tails of Jellyfish Galaxies. Astrophysical Journal Letters, 2021, 922, L6.	8.3	11
16	GASP XXXV: Characteristics of the Diffuse Ionised Gas in Gas-stripped Galaxies. Astrophysical Journal, 2021, 922, 131.	4.5	8
17	Role of Magnetic Fields in Ram Pressure Stripped Galaxies. Galaxies, 2021, 9, 116.	3.0	6
18	GASP and MaNGA Surveys Shed Light on the Enigma of the Gas Metallicity Gradients in Disk Galaxies. Astrophysical Journal, 2021, 923, 28.	4.5	13

2

#	Article	IF	CITATIONS
19	BUDHiES IV: Deep 21-cm neutral Hydrogen, optical, and UV imaging data of Abell 963 and Abell 2192 at z â‰f 0.2. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3531-3552.	4.4	15
20	GASP XXV: neutral hydrogen gas in the striking jellyfish galaxy JO204. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5029-5043.	4.4	28
21	The GOGREEN survey: the environmental dependence of the star-forming galaxy main sequence at 1.0 < <i>z</i> < 1.5. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5987-6000.	4.4	43
22	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at <i>z</i> Â>Â1. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5317-5342.	4.4	37
23	Anisotropic infall in the outskirts of OmegaWINGS galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4950-4959.	4.4	14
24	Passive spirals and shock influenced star formation in the merging cluster A3376. Monthly Notices of the Royal Astronomical Society, 2020, 496, 442-455.	4.4	5
25	The GOGREEN Survey: A deep stellar mass function of cluster galaxies at 1.0Â<Â <i>z</i> Â<Â1.4 and the complex nature of satellite quenching. Astronomy and Astrophysics, 2020, 638, A112.	5.1	53
26	GASP. Astronomy and Astrophysics, 2020, 640, A22.	5.1	35
27	The GOGREEN and GCLASS surveys: first data release. Monthly Notices of the Royal Astronomical Society, 2020, 500, 358-387.	4.4	23
28	GASP XXIX – unwinding the arms of spiral galaxies via ram-pressure stripping. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1285-1312.	4.4	29
29	GASP. XXII. The Molecular Gas Content of the JW100 Jellyfish Galaxy at zÂâ^1⁄4Â0.05: Does Ram Pressure Promote Molecular Gas Formation?. Astrophysical Journal, 2020, 889, 9.	4.5	58
30	GASP XXIV. The History of Abruptly Quenched Galaxies in Clusters. Astrophysical Journal, 2020, 892, 146.	4.5	35
31	GASP XXVII: Gas-phase Metallicity Scaling Relations in Disk Galaxies with and without Ram Pressure Stripping. Astrophysical Journal, 2020, 895, 106.	4.5	19
32	GASP. XXI. Star Formation Rates in the Tails of Galaxies Undergoing Ram Pressure Stripping. Astrophysical Journal, 2020, 899, 13.	4.5	49
33	GASP XXX. The Spatially Resolved SFR–Mass Relation in Stripping Galaxies in the Local Universe. Astrophysical Journal, 2020, 899, 98.	4.5	35
34	The High Molecular Gas Content, and the Efficient Conversion of Neutral into Molecular Gas, in Jellyfish Galaxies. Astrophysical Journal Letters, 2020, 897, L30.	8.3	47
35	The second <i>u</i> -band extension of the WINGS cluster survey. Astronomy and Astrophysics, 2020, 637, A54.	5.1	4
36	GASP – XX. From the loose spatially resolved to the tight global SFR–mass relation in local spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1597-1617.	4.4	27

#	Article	IF	CITATIONS
37	GASP – XVI. Does cosmic web enhancement turn on star formation in galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2278-2295.	4.4	34
38	GASP XVIII: star formation quenching due to AGN feedback in the central region of a jellyfish galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3102-3111.	4.4	37
39	GASP – XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4580-4591.	4.4	50
40	GASP XIII. Star formation in gas outside galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4466-4502.	4.4	83
41	GASP – XIX. AGN and their outflows at the centre of jellyfish galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 486-503.	4.4	35
42	GASP. XV. A MUSE view of extreme ram-pressure stripping along the line of sight: physical properties of the jellyfish galaxy JO201. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1157-1170.	4.4	39
43	The XXL Survey. Astronomy and Astrophysics, 2019, 625, A112.	5.1	13
44	A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate-redshift galaxies with WEAVE. Astronomy and Astrophysics, 2019, 632, A9.	5.1	18
45	The strong correlation between post-starburst fraction and environment. Monthly Notices of the Royal Astronomical Society, 2019, 482, 881-894.	4.4	35
46	Preprocessing among the Infalling Galaxy Population of EDisCS Clusters. Astrophysical Journal, 2019, 885, 6.	4.5	18
47	GASP XXIII: A Jellyfish Galaxy as an Astrophysical Laboratory of the Baryonic Cycle. Astrophysical Journal, 2019, 887, 155.	4.5	52
48	The role of environment on quenching, star formation and AGN activity. Proceedings of the International Astronomical Union, 2019, 15, 108-116.	0.0	0
49	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A15.	5.1	8
50	The Grism Lens-amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at zÂ>Â1*. Astronomical Journal, 2018, 156, 29.	4.7	8
51	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A7.	5.1	11
52	GASP – X. APEX observations of molecular gas in the discs and in the tails of ram-pressure stripped galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2508-2520.	4.4	57
53	GASP – XII. The variety of physical processes occurring in a single galaxy group in formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3152-3169.	4.4	35
54	Morphology rather than environment drives the SFR–mass relation in the local universe. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3456-3469.	4.4	21

#	Article	IF	CITATIONS
55	Enhanced Star Formation in Both Disks and Ram-pressure-stripped Tails of GASP Jellyfish Galaxies. Astrophysical Journal Letters, 2018, 866, L25.	8.3	115
56	UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4126-4135.	4.4	42
57	GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4753-4764.	4.4	123
58	The Local Cluster Survey. I. Evidence of Outside-in Quenching in Dense Environments. Astrophysical Journal, 2018, 862, 149.	4.5	18
59	CASP. VII. Signs of Gas Inflow onto a Lopsided Galaxy. Astrophysical Journal, 2018, 852, 94.	4.5	19
60	The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. Astrophysical Journal, 2017, 835, 254.	4.5	33
61	Emission line galaxies and active galactic nuclei in WINGS clusters. Astronomy and Astrophysics, 2017, 599, A83.	5.1	19
62	GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201. Astrophysical Journal, 2017, 844, 49.	4.5	76
63	The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead. Astrophysical Journal, 2017, 844, 45.	4.5	31
64	GASP. I. Gas Stripping Phenomena in Galaxies with MUSE. Astrophysical Journal, 2017, 844, 48.	4.5	248
65	Ram-pressure feeding of supermassive black holes. Nature, 2017, 548, 304-309.	27.8	106
66	OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe. Astrophysical Journal, 2017, 838, 148.	4.5	43
67	GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System at zÂâ^1⁄4Â0.05. Astrophysical Journal, 2017, 850, 163.	4.5	10
68	GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204. Astrophysical Journal, 2017, 846, 27.	4.5	64
69	Determining the Halo Mass Scale Where Galaxies Lose Their Gas [*] . Astrophysical Journal, 2017, 850, 181.	4.5	16
70	GASP. III. JO36: A Case of Multiple Environmental Effects at Play?. Astrophysical Journal, 2017, 848, 132.	4.5	66
71	The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on Hα Emitter Galaxies at 0.3Â<ÂzÂ<Â0.7. Astrophysical Journal, 2017, 837, 126. 	4.5	18
72	The concentration–mass relation of clusters of galaxies from the OmegaWINCS survey. Astronomy and Astrophysics, 2017, 607, A81.	5.1	51

#	Article	IF	CITATIONS
73	SLOW QUENCHING OF STAR FORMATION IN OMEGAWINGS CLUSTERS: GALAXIES IN TRANSITION IN THE LOCAL UNIVERSE. Astrophysical Journal Letters, 2016, 816, L25.	8.3	75
74	JELLYFISH GALAXY CANDIDATES AT LOW REDSHIFT. Astronomical Journal, 2016, 151, 78.	4.7	136
75	RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. Astrophysical Journal, 2016, 832, 7.	4.5	63
76	CASP: Gas stripping and the outskirts of galaxies as a function of environment. Proceedings of the International Astronomical Union, 2016, 11, 202-204.	0.0	0
77	Early Science with the Large Millimeter Telescope: COOL BUDHIES I – a pilot study of molecular and atomic gas at <i>z</i> ≃ 0.2. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3287-3306.	4.4	33
78	BUDHIES – III: the fate of H i and the quenching of galaxies in evolving environments. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1202-1221.	4.4	88
79	Disc colours in field and cluster spiral galaxies at 0.5 ≲ <i>z</i> ≲ 0.8. Astronomy and Astrophysics, 2016, 589, A82.	5.1	15
80	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). VII. THE DIVERSITY OF THE DISTRIBUTION OF STAR FORMATION IN CLUSTER AND FIELD GALAXIES AT 0.3 â‰ছ ≤0.7. Astrophysical Journal, 2016, 833, 178.	4.5	29
81	DEMONSTRATING DIVERSITY IN STAR-FORMATION HISTORIES WITH THE CSI SURVEY*. Astrophysical Journal, 2016, 833, 251.	4.5	26
82	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE. Astrophysical Journal, 2015, 812, 114.	4.5	175
83	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL DISTRIBUTION OF STAR FORMATION IN <i>z </i>	4.5	16
84	Morphological fractions of galaxies in WINGS clusters: revisiting the morphology–density paradigm. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3927-3944.	4.4	44
85	MATCHING THE EVOLUTION OF THE STELLAR MASS FUNCTION USING LOG-NORMAL STAR FORMATION HISTORIES. Astrophysical Journal Letters, 2015, 801, L12.	8.3	31
86	Galaxy sizes as a function of environment at intermediate redshift from the ESO Distant Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1246-1255.	4.4	29
87	FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS. Astrophysical Journal, 2015, 798, 52.	4.5	52
88	BUDHIES II: a phase-space view of H i gas stripping and star formation quenching in cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1715-1728.	4.4	183
89	The star formation history of galaxies: the role of galaxy mass, morphology and environment. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2749-2763.	4.4	53
90	WINGS-SPE. Astronomy and Astrophysics, 2014, 566, A32.	5.1	32

#	Article	IF	CITATIONS
91	WINGS Data Release: a database of galaxies in nearby clusters. Astronomy and Astrophysics, 2014, 564, A138.	5.1	61
92	Surface photometry of WINGS galaxies with GASPHOT. Astronomy and Astrophysics, 2014, 572, A87.	5.1	21
93	The connection between galaxy structure and quenching efficiency. Monthly Notices of the Royal Astronomical Society, 2014, 440, 843-858.	4.4	86
94	Ionized gas discs in elliptical and S0 galaxies at z < 1. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3491-3502.	4.4	16
95	WHAT DO SIMULATIONS PREDICT FOR THE GALAXY STELLAR MASS FUNCTION AND ITS EVOLUTION IN DIFFERENT ENVIRONMENTS?. Astrophysical Journal, 2014, 788, 57.	4.5	21
96	THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS. Astrophysical Journal Letters, 2014, 785, L36.	8.3	104
97	AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: THE REDSHIFT DISTRIBUTION AND EVOLUTION OF SUBMILLIMETER GALAXIES. Astrophysical Journal, 2014, 788, 125.	4.5	245
98	BUDHIES I: characterizing the environments in and around two clusters at zâ.0.2. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2111-2125.	4.4	35
99	The impact of global environment on galaxy mass functions at low redshift. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3141-3152.	4.4	34
100	THE EVOLUTION OF THE NUMBER DENSITY OF COMPACT GALAXIES. Astrophysical Journal, 2013, 777, 125.	4.5	77
101	THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES. Astrophysical Journal, 2013, 770, 63.	4.5	25
102	THE IMACS CLUSTER BUILDING SURVEY. I. DESCRIPTION OF THE SURVEY AND ANALYSIS METHODS. Astrophysical Journal, 2013, 770, 61.	4.5	19
103	THE IMACS CLUSTER BUILDING SURVEY. V. FURTHER EVIDENCE FOR STARBURST RECYCLING FROM QUANTITATIVE GALAXY MORPHOLOGIES. Astrophysical Journal, 2013, 777, 124.	4.5	15
104	THE IMACS CLUSTER BUILDING SURVEY. IV. THE LOG-NORMAL STAR FORMATION HISTORY OF GALAXIES. Astrophysical Journal, 2013, 770, 64.	4.5	100
105	The galaxy stellar mass function and its evolution with time show no dependence on global environment. Astronomy and Astrophysics, 2013, 550, A58.	5.1	58
106	THE IMACS CLUSTER BUILDING SURVEY. II. SPECTRAL EVOLUTION OF GALAXIES IN THE EPOCH OF CLUSTER ASSEMBLY. Astrophysical Journal, 2013, 770, 62.	4.5	105
107	SUPERDENSE GALAXIES AND THE MASS-SIZE RELATION AT LOW REDSHIFT. Astrophysical Journal, 2013, 762, 77.	4.5	150
108	Cl 1103.7–1245 atz= 0.96: the highest redshift galaxy cluster in the EDisCS survey. Astronomy and Astrophysics, 2012, 544, A104.	5.1	4

#	Article	IF	CITATIONS
109	The evolution of galaxy sizes. Proceedings of the International Astronomical Union, 2012, 8, 151-154.	0.0	3
110	GAS RESERVOIRS AND STAR FORMATION IN A FORMING GALAXY CLUSTER AT <i>z</i> â<0.2. Astrophysical Journal Letters, 2012, 756, L28.	8.3	38
111	Morphology of galaxies in the WINGS clusters. Monthly Notices of the Royal Astronomical Society, 2012, 420, 926-948.	4.4	66
112	The importance of the local density in shaping the galaxy stellar mass functions☠Monthly Notices of the Royal Astronomical Society, 2012, 420, 1481-1494.	4.4	47
113	The distribution of galaxy morphological types and the morphology-mass relation in different environments at low redshift. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 419, L14-L18.	3.3	45
114	The environmental history of group and cluster galaxies in a \hat{I}_{P} cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1277-1292.	4.4	246
115	The red-sequence of 72 WINGS local galaxy clusters. Astronomy and Astrophysics, 2011, 536, A34.	5.1	43
116	WINGS-SPE II: A catalog of stellar ages and star formation histories, stellar masses and dust extinction values for local clusters galaxies. Astronomy and Astrophysics, 2011, 526, A45.	5.1	63
117	Galaxy stellar mass functions of different morphological types in clusters, and their evolution between z= 0.8 and 0. Monthly Notices of the Royal Astronomical Society, 2011, 412, 246-268.	4.4	96
118	The evolution of early-type galaxies in clusters from zâ^¼ 0.8 to z â^¼â€ƒ0: the ellipticity distribution and the morphological mix. Monthly Notices of the Royal Astronomical Society, 2011, 413, 921-941.	4.4	25
119	The effect of the environment on the gas kinematics and the structure of distant galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1996-2019.	4.4	36
120	The Padova-Millennium Galaxy and Group Catalogue (PM2GC): the group-finding method and the PM2GC catalogues of group, binary and single field galaxies. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	41
121	Equivalent width Measurements in Optical Spectra of Galaxies in Local Clusters: Hints On the Star Formation History in Clusters. Open Astronomy, 2011, 20, 435-441.	0.6	1
122	DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS. Astrophysical Journal, 2010, 720, 87-98.	4.5	49
123	COMPARING THE RELATION BETWEEN STAR FORMATION AND GALAXY MASS IN DIFFERENT ENVIRONMENTS. Astrophysical Journal Letters, 2010, 710, L1-L6.	8.3	127
124	SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS. Astrophysical Journal, 2010, 712, 226-237.	4.5	149
125	SUPERDENSE MASSIVE GALAXIES IN THE ESO DISTANT CLUSTER SURVEY (EDisCS). Astrophysical Journal Letters, 2010, 721, L19-L23.	8.3	71
126	The shapes of BCGs and normal ellipticals in nearby clusters. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	14

#	Article	IF	CITATIONS
127	The evolution of the density of galaxy clusters and groups: denser environments at higher redshifts. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	12
128	THE <i>HST</i> /ACS COMA CLUSTER SURVEY. II. DATA DESCRIPTION AND SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2010, 191, 143-159.	7.7	42
129	THE ENVIRONMENTS OF STARBURST AND POST-STARBURST GALAXIES AT <i>z</i> = 0.4-0.8. Astrophysical Journal, 2009, 693, 112-131.	4.5	129
130	ABELL 851 AND THE ROLE OF STARBURSTS IN CLUSTER GALAXY EVOLUTION. Astrophysical Journal, 2009, 693, 152-173.	4.5	43
131	EVOLUTION OF THE RATE AND MODE OF STAR FORMATION IN GALAXIES SINCE <i>z</i> = 0.7. Astrophysical Journal, 2009, 699, L130-L133.	4.5	15
132	THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT <i>z</i> < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE. Astrophysical Journal, 2009, 700, 1559-1588.	4.5	90
133	WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey. Astronomy and Astrophysics, 2009, 495, 707-719.	5.1	128
134	SPITZER 24 μm DETECTIONS OF STARBURST GALAXIES IN ABELL 851. Astrophysical Journal, 2009, 693, 140-151	.4.5	34
135	Velocity dispersion measurements of dwarf galaxies in the Coma cluster - implications for the structure of the fundamental plane. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1647-1658.	4.4	14
136	On the role of the post-starburst phase in the buildup of the red sequence of intermediate-redshift clusters. Monthly Notices of the Royal Astronomical Society, 2009, 400, 68-77.	4.4	23
137	THE EVOLUTION OF SPIRAL, SO, AND ELLIPTICAL GALAXIES IN CLUSTERS. Astrophysical Journal, 2009, 697, L137-L140.	4.5	104
138	Evolution of the early-type galaxy fraction in clusters since <i>z</i> = 0.8. Astronomy and Astrophysics, 2009, 508, 1141-1159.	5.1	47
139	WINGS: A WIde-field Nearby Galaxy-cluster Survey. Astronomy and Astrophysics, 2009, 497, 667-676.	5.1	82
140	WINGS: a WIde-field nearby Galaxy-cluster survey. Astronomy and Astrophysics, 2009, 501, 851-864.	5.1	49
141	Evolution of red-sequence cluster galaxies from redshiftÂ0.8 toÂ0.4: ages, metallicities, and morphologies. Astronomy and Astrophysics, 2009, 499, 47-68.	5.1	76
142	The evolution of the brightest cluster galaxies since <i>z</i> â^¼ 1 from the ESO Distant Cluster Survey (EDisCS). Monthly Notices of the Royal Astronomical Society, 2008, 387, 1253-1263.	4.4	110
143	The <i>Hubble Space Telescope</i> Advanced Camera for Surveys Coma Cluster Survey. I. Survey Objectives and Design. Astrophysical Journal, Supplement Series, 2008, 176, 424-437.	7.7	79
144	The Relation between Star Formation, Morphology, and Local Density in Highâ€Redshift Clusters and Groups. Astrophysical Journal, 2008, 684, 888-904.	4.5	128

#	Article	IF	CITATIONS
145	Spectroscopy ofÂclusters in the ESO distant cluster survey (EDisCS). II Astronomy and Astrophysics, 2008, 482, 419-449.	5.1	70
146	WSRT Ultradeep Neutral Hydrogen Imaging of Galaxy Clusters at <i>z</i> â‰^ 0.2: A Pilot Survey of Abell 963 and Abell 2192. Astrophysical Journal, 2007, 668, L9-L13.	4.5	73
147	The build-up of the colour-magnitude relation in galaxy clusters since z 0.8. Monthly Notices of the Royal Astronomical Society, 2007, 374, 809-822.	4.4	189
148	A spectrophotometric model applied to cluster galaxies: the WINGS dataset. Astronomy and Astrophysics, 2007, 470, 137-152.	5.1	74
149	Substructures in WINGS clusters. Astronomy and Astrophysics, 2007, 470, 39-51.	5.1	73
150	WINGS: a WIde-field Nearby Galaxy-cluster Survey. Astronomy and Astrophysics, 2006, 445, 805-817.	5.1	159
151	The Evolution of the Star Formation Activity in Galaxies and Its Dependence on Environment. Astrophysical Journal, 2006, 642, 188-215.	4.5	249
152	ChandraXâ€Ray Observations of Galaxies in an Offâ€Center Region of the Coma Cluster. Astrophysical Journal, 2006, 643, 144-153.	4.5	10
153	The X-ray properties of optically selected z > 0.6 clusters in the European Southern Observatory Distant Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1777-1792.	4.4	25
154	Stellar Populations, Butcher-Oemler Effect, Star Formation in Clusters. Highlights of Astronomy, 2005, 13, 296-301.	0.0	0
155	Hαâ€derived Star Formation Rates for Threez≃0.75 EDisCS Galaxy Clusters. Astrophysical Journal, 2005, 630, 206-227.	4.5	136
156	The Buildup of the Red Sequence in Galaxy Clusters since z ~ 0.8. Astrophysical Journal, 2004, 610, L77-L80.	4.5	143
157	A Comparison of the Galaxy Populations in the Coma and Distant Clusters: The Evolution of k+a Galaxies and the Role of the Intracluster Medium. Astrophysical Journal, 2004, 601, 197-213.	4.5	175
158	Studying the Star Formation Histories of Galaxies in Clusters from Composite Spectra. Astrophysical Journal, 2004, 617, 867-878.	4.5	69
159	Spectroscopy of clusters in the ESO Distant Cluster Survey (EDisCS). Astronomy and Astrophysics, 2004, 427, 397-413.	5.1	84
160	A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. IV. The Luminosity Function. Astrophysical Journal, 2003, 587, 605-618.	4.5	63
161	A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. I. Wideâ€Area Photometric Survey: Observation and Data Analysis. Astrophysical Journal, Supplement Series, 2002, 138, 265-278.	7.7	27
162	Substructure in the Coma Cluster: Giants versus Dwarfs. Astrophysical Journal, 2002, 567, 178-187.	4.5	25

#	Article	IF	CITATIONS
163	A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. V. Dependence of the Spectroscopic Properties on Location in the Cluster. Astrophysical Journal, 2002, 567, 772-780.	4.5	30
164	A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. II. Spectroscopic Observations. Astrophysical Journal, Supplement Series, 2001, 137, 279-296.	7.7	55
165	Star Formation and Selective Dust Extinction in Luminous Starburst Galaxies. Astrophysical Journal, 2001, 550, 195-203.	4.5	66
166	A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. III. Spectral Ages and Metallicities. Astrophysical Journal, 2001, 562, 689-712.	4.5	124
167	Ages of S0 and Elliptical Galaxies in the Coma Cluster. Astrophysical Journal, 2001, 563, 118-123.	4.5	87
168	The Evolution of the Galactic Morphological Types in Clusters. Astrophysical Journal, 2000, 542, 673-683.	4.5	258
169	Optical Spectral Signatures of Dusty Starburst Galaxies. Astrophysical Journal, 2000, 529, 157-169.	4.5	167
170	A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies. Astrophysical Journal, Supplement Series, 1999, 122, 51-80.	7.7	459
171	The Star Formation Histories of Galaxies in Distant Clusters. Astrophysical Journal, 1999, 518, 576-593.	4.5	609
172	New Constraints on the Luminosity Evolution of Spheroidal Galaxies in Distant Clusters. Astrophysical Journal, 1998, 501, 522-532.	4.5	48
173	Evolution sincez= 0.5 of the Morphologyâ€Density Relation for Clusters of Galaxies. Astrophysical Journal, 1997, 490, 577-591	4.5	871
174	K and evolutionary corrections from UV to IR. Astronomy and Astrophysics, 1997, 122, 399-407.	2.1	313