Carla D Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1797127/publications.pdf

Version: 2024-02-01

77 2,011 27 papers citations h-index

79 79 79 2288
all docs docs citations times ranked citing authors

42

g-index

#	Article	IF	Citations
1	MCM-41 functionalized with bipyridyl groups and its use as a support for oxomolybdenum(vi) catalysts. Journal of Materials Chemistry, 2002, 12, 1735-1742.	6.7	163
2	Loading and delivery of sertraline using inorganic micro and mesoporous materials. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 357-365.	4.3	101
3	Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS Nano, 2016, 10, 5550-5559.	14.6	89
4	Kinetics of Cyclooctene Epoxidation withtert-Butyl Hydroperoxide in the Presence of [MoO2X2L]-Type Catalysts (L = Bidentate Lewis Base). European Journal of Inorganic Chemistry, 2005, 2005, 1716-1723.	2.0	73
5	Dichloro and dimethyl dioxomolybdenum(vi)–diazabutadiene complexes as catalysts for the epoxidation of olefins. New Journal of Chemistry, 2004, 28, 308-313.	2.8	68
6	Molecular Structure–Activity Relationships for the Oxidation of Organic Compounds Using Mesoporous Silica Catalysts Derivatised with Bis(halogeno)dioxomolybdenum(VI) Complexes. Chemistry - A European Journal, 2003, 9, 4380-4390.	3.3	65
7	Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. Journal of Molecular Catalysis A, 2004, 218, 5-11.	4.8	61
8	Synthesis and characterisation of organo-silica hydrophobic clay heterostructures for volatile organic compounds removal. Microporous and Mesoporous Materials, 2008, 111, 612-619.	4.4	59
9	Highly selective and recyclable MoO3 nanoparticles in epoxidation catalysis. Applied Catalysis A: General, 2015, 504, 344-350.	4.3	49
10	Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Applied Catalysis B: Environmental, 2017, 218, 709-720.	20.2	49
11	Synthesis and Characterization of Methyltrioxorhenium(VII) Immobilized in Bipyridyl-Functionalized Mesoporous Silica. European Journal of Inorganic Chemistry, 2002, 2002, 1100-1107.	2.0	48
12	Dioxomolybdenum(VI)-Modified Mesoporous MCM-41 and MCM-48 Materials for the Catalytic Epoxidation of Olefins. European Journal of Inorganic Chemistry, 2003, 2003, 3870-3877.	2.0	47
13	Vanadyl cationic complexes as catalysts in olefin oxidation. Dalton Transactions, 2015, 44, 5125-5138.	3.3	47
14	Heptacoordinate tricarbonyl Mo(II) complexes as highly selective oxidation homogeneous and heterogeneous catalysts. Journal of Catalysis, 2008, 256, 301-311.	6.2	46
15	Synthesis, characterization and catalytic studies of bis(chloro)dioxomolybdenum(VI)-chiral diimine complexes. Journal of Molecular Catalysis A, 2005, 236, 1-6.	4.8	45
16	Preparation and catalytic properties of a new dioxomolybdenum(VI) complex covalently anchored to mesoporous MCM-48. Inorganic Chemistry Communication, 2003, 6, 1228-1233.	3.9	43
17	Organometallic Mo complex anchored to magnetic iron oxide nanoparticles as highly recyclable epoxidation catalyst. Journal of Organometallic Chemistry, 2014, 760, 2-10.	1.8	42
18	Bio-inspired Mo(II) complexes as active catalysts in homogeneous and heterogeneous olefin epoxidation. Applied Catalysis A: General, 2010, 384, 84-93.	4.3	41

#	Article	IF	CITATIONS
19	Highly enantioselective olefin epoxidation controlled by helical confined environments. Journal of Catalysis, 2014, 309, 21-32.	6.2	40
20	Photocatalytic degradation of rhodamine B using Mo heterogeneous catalysts under aerobic conditions. Applied Catalysis B: Environmental, 2012, 113-114, 180-191.	20.2	36
21	Mo(II) complexes: A new family of cytotoxic agents?. Journal of Inorganic Biochemistry, 2010, 104, 1171-1177.	3.5	34
22	MoO2 nanoparticles as highly efficient olefin epoxidation catalysts. Applied Catalysis A: General, 2015, 504, 399-407.	4.3	32
23	Pyridine Carboxylate Complexes of Moll as Active Catalysts in Homogeneous and Heterogeneous Polymerization. European Journal of Inorganic Chemistry, 2007, 2007, 2917-2925.	2.0	31
24	Hepta-coordinate halocarbonyl molybdenum(II) and tungsten(II) complexes as heterogeneous polymerization catalysts. Journal of Molecular Catalysis A, 2006, 256, 90-98.	4.8	30
25	Immobilisation of rhodium acetonitrile complexes in ordered mesoporous silica. Physical Chemistry Chemical Physics, 2002, 4, 3098-3105.	2.8	29
26	An Oligosilsesquioxane Cage Functionalized with Molybdenum(II) Organometallic Fragments. Organometallics, 2012, 31, 4495-4503.	2.3	28
27	Performance evaluation of mesoporous host materials in olefin epoxidation using Mo(II) and Mo(VI) active speciesâ€"Inorganic vs. hybrid matrix. Applied Catalysis A: General, 2011, 408, 105-116.	4.3	27
28	Marine sponge melanin: a new source of an old biopolymer. Structural Chemistry, 2012, 23, 115-122.	2.0	26
29	Synthesis, characterization and cytotoxicity of cyclopentadienyl ruthenium(II) complexes containing carbohydrate-derived ligands. Journal of Organometallic Chemistry, 2014, 760, 240-247.	1.8	25
30	Synthesis and catalytic properties of manganese(II) and oxovanadium(IV) complexes anchored to mesoporous MCM-41. Microporous and Mesoporous Materials, 2008, 112, 14-25.	4.4	24
31	Activity of Mo(II) allylic complexes supported in MCM-41 as oxidation catalysts precursors. Microporous and Mesoporous Materials, 2009, 117, 670-677.	4.4	23
32	Advantageous delivery of nifedipine from inorganic materials showing increased solubility and biocompatibility. Microporous and Mesoporous Materials, 2014, 183, 192-200.	4.4	21
33	Novel titanate nanotubes-cyanocobalamin materials: Synthesis and enhanced photocatalytic properties for pollutants removal. Solid State Sciences, 2017, 63, 30-41.	3.2	21
34	Exploring bulk and colloidal Mg/Al hydrotalcite–Au nanoparticles hybrid materials in aerobic olefin epoxidation. Journal of Catalysis, 2018, 358, 187-198.	6.2	21
35	Modelling the luminescence of extended solids: an example of a highly luminescent MCM-41 impregnated with a Eu $<$ sup $>3+sup>\hat{I}^2-diketonate complex. Journal of Materials Chemistry C, 2014, 2, 9701-9711.$	5.5	20
36	Bimetallic transition metal–ruthenium(II) complexes containing bridging bipyrimidine ligands. Polyhedron, 2003, 22, 2799-2807.	2.2	19

#	Article	IF	CITATIONS
37	Vibrational Study on the Local Structure of Postâ€Synthesis and Hybrid Mesoporous Materials: Are There Fundamental Distinctions?. Chemistry - A European Journal, 2007, 13, 7874-7882.	3.3	19
38	The effect of immobilization on the catalytic activity of molybdenum η3-allyldicarbonyl complexes with nitrogen donor ligands bearing N–H groups. Journal of Molecular Catalysis A, 2010, 321, 92-100.	4.8	19
39	Clays in Organic Synthesis – Preparation and Catalytic Applications. Current Organic Synthesis, 2012, 9, 670-694.	1.3	18
40	Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media. Journal of Asian Ceramic Societies, 2017, 5, 466-471.	2.3	17
41	Molybdenum(<scp>ii</scp>) complexes with <i>p</i> -substituted BIAN ligands: synthesis, characterization, biological activity and computational study. Dalton Transactions, 2019, 48, 8449-8463.	3.3	17
42	Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation. Applied Surface Science, 2016, 385, 18-27.	6.1	16
43	Novel approach to synthesise MoO3-TiO2 nanocomposites for the photo-assisted oxidation of benzyl alcohol to benzaldehyde. Inorganic Chemistry Communication, 2020, 119, 108099.	3.9	16
44	Synthesis and characterisation of hybrid mesoporous materials with the 1,4-diazobutadiene ligand. Microporous and Mesoporous Materials, 2006, 95, 104-111.	4.4	15
45	The Versatility of Immobilized Mo Complexes in Organic Transformations - Epoxidation and Metathesis Reactions. Current Organic Chemistry, 2012, 16, 89-114.	1.6	14
46	Pyridine Carboxylate Complexes of Mo(II) as Active Catalysts in Homogeneous and Heterogeneous Olefin Epoxidation. Current Inorganic Chemistry, 2011, 1, 146-155.	0.2	14
47	Mo(II) complexes of 8-aminoquinoline and their immobilization in MCM-41. Applied Catalysis A: General, 2013, 455, 172-182.	4.3	13
48	New Mo(II) complexes in MCM-41 and silica: Synthesis and catalysis. Journal of Organometallic Chemistry, 2014, 751, 443-452.	1.8	13
49	Molybdenum(II) catalyst precursors in olefin oxidation reactions. Inorganica Chimica Acta, 2015, 431, 122-131.	2.4	13
50	Synthesis and characterisation of ruthenium(ii) complexes containing ferrocenyl-derived ligands. New Journal of Chemistry, 2002, 26, 1384-1388.	2.8	12
51	Hybrid mesoporous MCM-41 type material containing 1,4-diazobutadiene chelate ligand in the walls. Progress in Solid State Chemistry, 2005, 33, 163-170.	7.2	12
52	Helical Channel Mesoporous Materials with Embedded Magnetic Iron Nanoparticles: Chiral Recognition and Implications in Asymmetric Olefin Epoxidation. Advanced Synthesis and Catalysis, 2015, 357, 3127-3140.	4.3	12
53	Looking inside the pores of a MCM-41 based Mo heterogeneous styrene oxidation catalyst: an inelastic neutron scattering study. Physical Chemistry Chemical Physics, 2016, 18, 17272-17280.	2.8	12
54	Catalytic performance of bulk and colloidal Co/Al layered double hydroxide with Au nanoparticles in aerobic olefin oxidation. Applied Catalysis A: General, 2019, 584, 117155.	4.3	12

#	Article	IF	CITATIONS
55	Hydrophobic Porous Benzene-Silica Hybrid Clay Heterostructure and Its Application in the Adsorption of Volatile Organic Compounds. Materials Science Forum, 2006, 514-516, 470-474.	0.3	11
56	Catalytic Application of Fe-doped MoO2 Tremella-Like Nanosheets. Topics in Catalysis, 2016, 59, 1123-1131.	2.8	11
57	Synthesis and catalytic activity of Mo(II) complexes of α-diimines intercalated in layered double hydroxides. Inorganica Chimica Acta, 2019, 486, 274-282.	2.4	10
58	Porous materials as delivery and protective agents for Vitamin A. RSC Advances, 2016, 6, 66495-66504.	3.6	8
59	New heterogeneous catalysts with Mo(II) intercalated in layered double hydroxides. Inorganica Chimica Acta, 2017, 455, 483-488.	2.4	8
60	Selective Catalytic Oxidation of Benzyl Alcohol by MoO2 Nanoparticles. Catalysts, 2020, 10, 265.	3.5	8
61	Zinc biomimetic catalysts for epoxidation of olefins with H2O2. Applied Clay Science, 2020, 190, 105562.	5.2	8
62	Tuning the Surface of Mesoporous Materials Towards Hydrophobicity-Effects in Olefin Epoxidation. Current Inorganic Chemistry, 2011, 1, 156-165.	0.2	8
63	A new role for layered double hydroxides hybrid materials—uptake and delivery of small molecules into the gas phase. New Journal of Chemistry, 2010, 34, 541.	2.8	7
64	Pore size matters! Helical heterogeneous catalysts in olefin oxidation. Applied Catalysis A: General, 2015, 504, 328-337.	4.3	7
65	Pulsed current electrodeposition of Zn–Ag2S/TiO2 nanocomposite films as potential photoelectrodes. Journal of Solid State Electrochemistry, 2013, 17, 2349-2359.	2.5	6
66	New Molybdenum(II) Complexes with $\hat{1}\pm$ -Diimine Ligands: Synthesis, Structure, and Catalytic Activity in Olefin Epoxidation. Molecules, 2019, 24, 578.	3.8	5
67	Helical Materials with Chiral Mo(II) Catalysts. Topics in Catalysis, 2016, 59, 1237-1248.	2.8	4
68	Molybdenum(II) Complexes with α-Diimines: Catalytic Activity in Organic and Ionic Liquid Solvents. European Journal of Inorganic Chemistry, 2018, 2018, 3922-3932.	2.0	4
69	Probing the relevance of MoO ₂ nanoparticles' synthesis on their catalytic activity by inelastic neutron scattering. Physical Chemistry Chemical Physics, 2020, 22, 896-904.	2.8	4
70	Colourless aegirine in metamorphic rocks from Bayan Obo (Inner Mongolia): lack of charge transfer transitions as possible explanation. European Journal of Mineralogy, 2014, 25, 987-993.	1.3	3
71	Solventless Olefin Epoxidation Using a Mo–Loaded Sisal Derived Acid har Catalyst. ChemistrySelect, 2018, 3, 10357-10363.	1.5	3
72	Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts. Catalysts, 2021, 11, 380.	3.5	3

#	Article	IF	CITATIONS
73	Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry, 2021, 3, 753-764.	2.2	3
74	New heptacoordinate tungsten(II) complexes with \hat{l} ±-diimine ligands in the catalytic oxidation of multifunctional olefins. Inorganica Chimica Acta, 2021, 519, 120263.	2.4	1
75	Nitroarene and dye reduction with 2:1 Co/Al layered double hydroxide catalysts – Is gold still necessary?. Inorganica Chimica Acta, 2021, 521, 120336.	2.4	1
76	Tuning the Surface of Mesoporous Materials Towards Hydrophobicity-Effects in Olefin Epoxidation. Current Inorganic Chemistry, 2011, 1, 156-165.	0.2	0
77	Editorial [Hot Topic: Recent Advances in Oxidation Catalysis (Guest Editor: Carla D. Nunes)]. Current Inorganic Chemistry, 2011, 1, 130-130.	0.2	0