Michael J Holtzman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796935/publications.pdf

Version: 2024-02-01

155 papers 14,385 citations

18482 62 h-index 22166 113 g-index

166 all docs

166
docs citations

166 times ranked 21947 citing authors

#	Article	IF	Citations
1	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	3.4	58
2	Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nature Communications, 2022, 13, 633.	12.8	28
3	Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. Journal of Immunology, 2022, 208, 1467-1482.	0.8	6
4	Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Reports, 2022, 39, 110799.	6.4	39
5	Chloride channel accessory 1 gene deficiency causes selective loss of mucus production in a new pig model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L842-L852.	2.9	5
6	TLR3-Activated Monocyte-Derived Dendritic Cells Trigger Progression from Acute Viral Infection to Chronic Disease in the Lung. Journal of Immunology, 2021, 206, 1297-1314.	0.8	13
7	Dysfunction of the proteoglycan Tsukushi causes hydrocephalus through altered neurogenesis in the subventricular zone in mice. Science Translational Medicine, 2021, 13, .	12.4	14
8	Selective Imaging of Lung Macrophages Using [11C]PBR28-Based Positron Emission Tomography. Molecular Imaging and Biology, 2021, 23, 905-913.	2.6	8
9	Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease. Journal of Clinical Investigation, 2021, 131, .	8.2	30
10	Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nature Communications, 2021, 12, 447.	12.8	67
11	<i>Pseudomonas aeruginosa</i> survives in epithelia by ExoSâ€mediated inhibition of autophagy and mTOR. EMBO Reports, 2021, 22, e50613.	4.5	19
12	Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nature Communications, 2021, 12, 7122.	12.8	21
13	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	28.9	446
14	Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron, 2020, 108, 623-639.e10.	8.1	56
15	Interplay of RFX transcription factors $1,2$ and 3 in motile ciliogenesis. Nucleic Acids Research, 2020, 48, 9019-9036.	14.5	36
16	Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host and Microbe, 2020, 28, 465-474.e4.	11.0	156
17	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
18	Sex effects in the association between airway microbiome and asthma. Annals of Allergy, Asthma and Immunology, 2020, 125, 652-657.e3.	1.0	10

#	Article	IF	CITATIONS
19	SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 2020, 21, 1327-1335.	14.5	743
20	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	28.9	486
21	Group 2 Innate Lymphoid Cells Must Partner with the Myeloid–Macrophage Lineage for Long-Term Postviral Lung Disease. Journal of Immunology, 2020, 205, 1084-1101.	0.8	16
22	Respiratory Enterovirus (like Parainfluenza Virus) Can Cause Chronic Lung Disease if Protection by Airway Epithelial STAT1 Is Lost. Journal of Immunology, 2019, 202, 2332-2347.	0.8	17
23	A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to <i>Pseudomonas aeruginosa</i> Lung Infection in Mice. Journal of Immunology, 2019, 203, 3000-3012.	0.8	94
24	The choroid plexus is an important circadian clock component. Nature Communications, 2018, 9, 1062.	12.8	118
25	Triggering Receptor Expressed on Myeloid Cells-2 Expression Tracks With M2-Like Macrophage Activity and Disease Severity inÂCOPD. Chest, 2018, 153, 77-86.	0.8	31
26	Epithelial–Immune Cell Interactions for Drug Discovery in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2018, 15, S260-S265.	3.2	5
27	Influenza A Virus Infection Causes Chronic Lung Disease Linked to Sites of Active Viral RNA Remnants. Journal of Immunology, 2018, 201, 2354-2368.	0.8	69
28	Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. Journal of Clinical Investigation, 2018, 128, 5110-5122.	8.2	53
29	PET-based Imaging of Chemokine Receptor 2 in Experimental and Disease-related Lung Inflammation. Radiology, 2017, 283, 758-768.	7.3	44
30	Estrogen receptor α is required for oviductal transport of embryos. FASEB Journal, 2017, 31, 1595-1607.	0.5	50
31	American Thoracic Society/National Heart, Lung, and Blood Institute Asthma–Chronic Obstructive Pulmonary Disease Overlap Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 375-381.	5.6	86
32	Epithelial Chloride Transport by CFTR Requires TMEM16A. Scientific Reports, 2017, 7, 12397.	3.3	100
33	The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 2017, 357, 498-502.	12.6	391
34	Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nature Microbiology, 2017, 2, 17101.	13.3	29
35	Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation. PLoS Genetics, 2017, 13, e1007128.	3.5	57
36	Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. ELife, 2016, 5, .	6.0	145

#	Article	IF	Citations
37	First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2335-2344.	2.4	14
38	Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN-1 ³ -Dependent Gene Expression. Cell Host and Microbe, 2016, 20, 72-82.	11.0	153
39	Removal of aquaporin-4 from glial and ependymal membranes causes brain water accumulation. Molecular and Cellular Neurosciences, 2016, 77, 47-52.	2.2	35
40	IL13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy, 2016, 12, 397-409.	9.1	130
41	Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host and Microbe, 2016, 19, 102-113.	11.0	83
42	STAT1 modification improves therapeutic effects of interferons on lung cancer cells. Journal of Translational Medicine, 2015, 13, 293.	4.4	28
43	OSCAR Is a Receptor for Surfactant Protein D That Activates TNF-α Release from Human CCR2+ Inflammatory Monocytes. Journal of Immunology, 2015, 194, 3317-3326.	0.8	47
44	Impaired CD8+ T cell immunity after allogeneic bone marrow transplantation leads to persistent and severe respiratory viral infection. Transplant Immunology, 2015, 32, 51-60.	1.2	9
45	The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 790-799.	2.5	31
46	An acoustofluidic sputum liquefier. Lab on A Chip, 2015, 15, 3125-3131.	6.0	51
47	TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. Journal of Experimental Medicine, 2015, 212, 681-697.	8.5	164
48	Spatially Heterogeneous Choroid Plexus Transcriptomes Encode Positional Identity and Contribute to Regional CSF Production. Journal of Neuroscience, 2015, 35, 4903-4916.	3.6	138
49	The Induction of Pattern-Recognition Receptor Expression against Influenza A Virus through Duox2-Derived Reactive Oxygen Species in Nasal Mucosa. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 525-535.	2.9	28
50	PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nature Immunology, 2015, 16, 1215-1227.	14.5	191
51	Novel Mode of ISG15-Mediated Protection against Influenza A Virus and Sendai Virus in Mice. Journal of Virology, 2015, 89, 337-349.	3.4	35
52	Linking Acute Infection to Chronic Lung Disease. The Role of IL-33–Expressing Epithelial Progenitor Cells. Annals of the American Thoracic Society, 2014, 11, S287-S291.	3.2	16
53	The Red Journal at 25 Years. Looking Back and Looking Ahead. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 839-840.	2.9	0
54	Myb Permits Multilineage Airway Epithelial Cell Differentiation. Stem Cells, 2014, 32, 3245-3256.	3.2	43

#	Article	IF	Citations
55	Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. Journal of Allergy and Clinical Immunology, 2014, 134, 1402-1412.e7.	2.9	71
56	Preparation, crystallization, and preliminary crystallographic analysis of wild-type and mutant human TREM-2 ectodomains linked to neurodegenerative and inflammatory diseases. Protein Expression and Purification, 2014, 96, 32-38.	1.3	14
57	High-Throughput Screening Normalized to Biological Response: Application to Antiviral Drug Discovery. Journal of Biomolecular Screening, 2014, 19, 119-130.	2.6	16
58	The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nature Reviews Immunology, 2014, 14, 686-698.	22.7	193
59	Chemosensory Functions for Pulmonary Neuroendocrine Cells. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 637-646.	2.9	113
60	Does chloride channel accessory 3 have a role in arthritis pain? A study on murine antigen-induced arthritis. Neuroscience Letters, 2014, 576, 40-44.	2.1	5
61	Increased Iron Sequestration in Alveolar Macrophages in Chronic Obtructive Pulmonary Disease. PLoS ONE, 2014, 9, e96285.	2.5	61
62	Reactive Oxygen Species Induce Antiviral Innate Immune Response through IFN-λ Regulation in Human Nasal Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 855-865.	2.9	100
63	Long-term IL-33–producing epithelial progenitor cells in chronic obstructive lung disease. Journal of Clinical Investigation, 2013, 123, 3967-3982.	8.2	269
64	Molecular heterogeneity in the choroid plexus epithelium: the 22â€member γâ€protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation. Journal of Neurochemistry, 2012, 120, 913-927.	3.9	29
65	P-Glycoprotein Is a Major Determinant of Norbuprenorphine Brain Exposure and Antinociception. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 53-61.	2.5	63
66	Induction of Alternatively Activated Macrophages Enhances Pathogenesis during Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2012, 86, 13334-13349.	3.4	88
67	Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation. Journal of Biological Chemistry, 2012, 287, 42138-42149.	3.4	61
68	High Throughput Screening for Small Molecule Enhancers of the Interferon Signaling Pathway to Drive Next-Generation Antiviral Drug Discovery. PLoS ONE, 2012, 7, e36594.	2.5	46
69	Monitoring in vivo changes in lung microstructure with ³ He MRI in Sendai virus-infected mice. Journal of Applied Physiology, 2012, 112, 1593-1599.	2.5	8
70	Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. Journal of Clinical Investigation, 2012, 122, 2741-2748.	8.2	134
71	IL-13–induced airway mucus production is attenuated by MAPK13 inhibition. Journal of Clinical Investigation, 2012, 122, 4555-4568.	8.2	168
72	Host epithelial–viral interactions as cause and cure for asthma. Current Opinion in Immunology, 2011, 23, 487-494.	5. 5	21

#	Article	IF	CITATIONS
73	Hypersusceptibility to Respiratory Viruses as a Shared Mechanism for Asthma, Chronic Obstructive Pulmonary Disease, and Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 739-742.	2.9	13
74	A New Electrospray Aerosol Generator with High Particle Transmission Efficiency. Aerosol Science and Technology, 2011, 45, 1176-1183.	3.1	21
75	Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-to-Postnatal Transition of Neurogenesis in the Olfactory Bulb. Journal of Neuroscience, 2011, 31, 9368-9382.	3.6	52
76	Alternatively Activated Macrophages and Airway Disease. Chest, 2011, 140, 768-774.	0.8	107
77	Corrections: Airway Epithelial versus Immune Cell Stat1 Function for Innate Defense against Respiratory Viral Infection. Journal of Immunology, 2011, 187, 2834-2834.	0.8	1
78	New immune pathways from chronic postâ€viral lung disease. Annals of the New York Academy of Sciences, 2010, 1183, 195-210.	3.8	18
79	Cutting Edge: CD49d+ Neutrophils Induce FcεRl Expression on Lung Dendritic Cells in a Mouse Model of Postviral Asthma. Journal of Immunology, 2010, 185, 4983-4987.	0.8	59
80	Detection of respiratory viruses and the associated chemokine responses in serious acute respiratory illness. Thorax, 2010, 65, 639-644.	5.6	34
81	Viral and Host Strategies to Take Advantage of the Innate Immune Response. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 507-510.	2.9	6
82	Cigarette Smoke Induces Nucleic-Acid Oxidation in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 576-584.	2.9	62
83	Alternatively Activated Macrophages as Cause or Effect in Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 1-4.	2.9	15
84	Melanoma Differentiation-Associated Gene 5 (MDA5) Is Involved in the Innate Immune Response to Paramyxoviridae Infection In Vivo. PLoS Pathogens, 2010, 6, e1000734.	4.7	112
85	Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. Journal of Experimental Medicine, 2010, 207, 823-836.	8.5	662
86	Macrophage Chitinase 1 Stratifies Chronic Obstructive Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 379-384.	2.9	48
87	Oxidative Damage to Nucleic Acids in Severe Emphysema. Chest, 2009, 135, 965-974.	0.8	71
88	Chapter 5 Immune Pathways for Translating Viral Infection into Chronic Airway Disease. Advances in Immunology, 2009, 102, 245-276.	2.2	41
89	Skin-Derived TSLP Triggers Progression from Epidermal-Barrier Defects to Asthma. PLoS Biology, 2009, 7, e1000067.	5. 6	202
90	The Role of CLCA Proteins in Inflammatory Airway Disease. Annual Review of Physiology, 2009, 71, 425-449.	13.1	105

#	Article	IF	Citations
91	Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. Journal of Experimental Medicine, 2009, 206, 2191-2204.	8.5	70
92	Macrophage chitinase 1 stratifies chronic obstructive lung disease. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 379-84.	2.9	33
93	Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nature Medicine, 2008, 14, 633-640.	30.7	477
94	Involvement of the p38 MAPK pathway in IL-13-induced mucous cell metaplasia in mouse tracheal epithelial cells. Respirology, 2008, 13, 191-202.	2.3	39
95	Airway Epithelial versus Immune Cell Stat1 Function for Innate Defense against Respiratory Viral Infection. Journal of Immunology, 2008, 180, 3319-3328.	0.8	68
96	Dipeptidyl Peptidase I-Dependent Neutrophil Recruitment Modulates the Inflammatory Response to Sendai Virus Infection. Journal of Immunology, 2008, 180, 3535-3542.	0.8	48
97	Airway epithelial versus immune cell STATâ€₁ function for innate defense against respiratory viral infection. FASEB Journal, 2008, 22, 672.4.	0.5	0
98	Controls for Lung Dendritic Cell Maturation and Migration during Respiratory Viral Infection. Journal of Immunology, 2007, 179, 1438-1448.	0.8	91
99	A Transgenic FOXJ1-Cre System for Gene Inactivation in Ciliated Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 515-519.	2.9	75
100	Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 138-145.	5.6	208
101	STAT1 Activation Causes Translocation of Bax to the Endoplasmic Reticulum during the Resolution of Airway Mucous Cell Hyperplasia by IFN-γ. Journal of Immunology, 2007, 178, 8107-8116.	0.8	34
102	Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. Journal of Experimental Medicine, 2007, 204, 2759-2769.	8.5	184
103	Role of PKCδ in IFN-γ-inducible CIITA gene expressionâ~†. Molecular Immunology, 2007, 44, 2841-2849.	2.2	16
104	Emerging role of dendritic cells in respiratory viral infection. Journal of Molecular Medicine, 2007, 85, 1057-1068.	3.9	53
105	Genetic segregation of airway disease traits despite redundancy of calcium-activated chloride channel family members. Physiological Genomics, 2006, 25, 502-513.	2.3	67
106	Preface to Series. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 523-526.	2.9	3
107	Immunogenetic Programs for Viral Induction of Mucous Cell Metaplasia. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 29-39.	2.9	8
108	Chemokine Complexity. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 143-146.	2.9	15

#	Article	IF	Citations
109	Genetic Variability of Human Metapneumovirus Infection: Evidence of a Shift in Viral Genotype without a Change in Illness. Journal of Infectious Diseases, 2006, 193, 396-403.	4.0	120
110	Chemokine Signaling Regulates Apoptosis as well as Immune Cell Traffic in Host Defense. Cell Cycle, 2006, 5, 380-383.	2.6	8
111	Influenza Virus Receptor Specificity and Cell Tropism in Mouse and Human Airway Epithelial Cells. Journal of Virology, 2006, 80, 7469-7480.	3.4	332
112	Cutting Edge: B and T Lymphocyte Attenuator and Programmed Death Receptor-1 Inhibitory Receptors Are Required for Termination of Acute Allergic Airway Inflammation. Journal of Immunology, 2006, 176, 3909-3913.	0.8	84
113	Hepatitis C Virus Core Protein Blocks Interferon Signaling by Interaction with the STAT1 SH2 Domain. Journal of Virology, 2006, 80, 9226-9235.	3.4	167
114	Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. Journal of Clinical Investigation, 2006, 116, 309-321.	8.2	231
115	Defining and Adjusting Divergent Host Responses to Viral Infection. Immunologic Research, 2005, 32, 123-142.	2.9	2
116	A Centennial History of Research on Asthma Pathogenesis. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 483-489.	2.9	39
117	Detection of Severe Human Metapneumovirus Infection by Real-Time Polymerase Chain Reaction and Histopathological Assessment. Journal of Infectious Diseases, 2005, 192, 1052-1060.	4.0	98
118	Acute and Chronic Airway Responses to Viral Infection: Implications for Asthma and Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2005, 2, 132-140.	3.5	50
119	Modification of the Stat1 SH2 Domain Broadly Improves Interferon Efficacy in Proportion to p300/CREB-binding Protein Coactivator Recruitment. Journal of Biological Chemistry, 2005, 280, 34306-34315.	3.4	33
120	Respiratory Syncytial Virus Nonstructural Proteins NS1 and NS2 Mediate Inhibition of Stat2 Expression and Alpha/Beta Interferon Responsiveness. Journal of Virology, 2005, 79, 9315-9319.	3.4	230
121	CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Medicine, 2005, 11, 1180-1187.	30.7	263
122	Differential Role of Janus Family Kinases (JAKs) in Interferon-γ–Induced Lung Epithelial ICAM-1 Expression: Involving Protein Interactions between JAKs, Phospholipase Cγ, c-Src, and STAT1. Molecular Pharmacology, 2004, 65, 589-598.	2.3	42
123	Asthma Exacerbations after Glucocorticoid Withdrawal Reflects T Cell Recruitment to the Airway. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 842-849.	5.6	47
124	"Hit-and-Run―Effects of Paramyxoviruses as a Basis for Chronic Respiratory Disease. Pediatric Infectious Disease Journal, 2004, 23, S235-S245.	2.0	12
125	Where are the gaps in asthma research? A counter-perspective. Journal of Allergy and Clinical Immunology, 2003, 111, 244-247.	2.9	8
126	Drug Development for Asthma. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 163-171.	2.9	45

#	Article	IF	Citations
127	Transition, Sunlight, and the Art of Journal Maintenance. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 1-2.	2.9	14
128	Apoptosis in the Airways. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 3-7.	2.9	61
129	Developing the epithelial, viral, and allergic paradigm for asthma: Giles F. Filley lecture. Chest, 2003, 123, 377S-84S.	0.8	1
130	Interferon- \hat{l}^3 -induced Epithelial ICAM-1 Expression and Monocyte Adhesion. Journal of Biological Chemistry, 2002, 277, 7118-7126.	3.4	79
131	Antigen-Nonspecific Recruitment of Th2 Cells to the Lung as a Mechanism for Viral Infection-Induced Allergic Asthma. Journal of Immunology, 2002, 169, 5458-5467.	0.8	89
132	Improving Peer Review and Introducing Translational Review. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 1-2.	2.9	1
133	Immunity, Inflammation, and Remodeling in the Airway Epithelial Barrier: Epithelial-Viral-Allergic Paradigm. Physiological Reviews, 2002, 82, 19-46.	28.8	115
134	Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. Journal of Clinical Investigation, 2002, 110, 165-175.	8.2	135
135	Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. Journal of Clinical Investigation, 2002, 110, 165-175.	8.2	122
136	Determinants of outcome for patients admitted to a long-term ventilator unit. Southern Medical Journal, 2002, 95, 310-7.	0.7	1
137	Effect of mechanical deformation of neutrophils on their CD18/ICAM-1-dependent adhesion. Journal of Applied Physiology, 2001, 91, 1084-1090.	2.5	15
138	Electronics, People, and the Art of Publication. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 1-2.	2.9	6
139	Interleukin 12 P40 Production by Barrier Epithelial Cells during Airway Inflammation. Journal of Experimental Medicine, 2001, 193, 339-352.	8.5	152
140	Could Asthma Be Worsened by Stimulating the T-helper Type 1 Immune Response?. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 143-146.	2.9	56
141	Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. Journal of Clinical Investigation, 1999, 103, 1353-1361.	8.2	195
142	Direct Suppression of Stat1 Function during Adenoviral Infection. Immunity, 1998, 9, 871-880.	14.3	151
143	Patterns for RANTES Secretion and Intercellular Adhesion Molecule 1 Expression Mediate Transepithelial T Cell Traffic Based on Analyses In Vitro and In Vivo. Journal of Experimental Medicine, 1998, 187, 1927-1940.	8.5	79
144	Matching Scientific with Societal Interests: Charges for the New Editor. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 1-2.	2.9	9

#	Article	lF	CITATION
145	Targeted Inhibition of Interferon-1³-dependent Intercellular Adhesion Molecule-1 (ICAM-1) Expression Using Dominant-Negative Stat1. Journal of Biological Chemistry, 1997, 272, 28582-28589.	3.4	90
146	Molecular Cloning, Functional Expression, and Selective Regulation of Ovine Prostaglandin H Synthase-2. Biochemical and Biophysical Research Communications, 1996, 227, 499-506.	2.1	22
147	Stat1 Depends on Transcriptional Synergy with Sp1. Journal of Biological Chemistry, 1995, 270, 30264-30267.	3.4	241
148	Prostaglandin H Synthase and Lipoxygenase Gene Families in the Epithelial Cell Barrier. Annals of the New York Academy of Sciences, 1994, 744, 58-77.	3.8	23
149	Histochemical Evidence for Induction of Arachidonate 15-Lipoxygenase in Airway Disease. The American Review of Respiratory Disease, 1993, 147, 1024-1028.	2.9	69
150	Cell Adhesion Molecules as Targets for Unraveling the Genetic Regulation of Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 246-247.	2.9	17
151	Synthesis of the 1-O-hexadecyl molecular species of platelet-activating factor by airway epithelial and vascular endothelial cells. Biochemical and Biophysical Research Communications, 1991, 177, 357-364.	2.1	27
152	Arachidonic Acid Metabolism: Implications of Biological Chemistry for Lung Function and Disease. The American Review of Respiratory Disease, 1991, 143, 188-203.	2.9	235
153	Arachidonate 12-Lipoxygenase and Cyclooxygenase:PGE Isomerase are Predominant Pathways for Oxygenation in Bovine Tracheal Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1989, 1, 237-244.	2.9	27
154	Identification of a cyclooxygenase-related gene and its potential role in prostaglandin formation. Biochemical and Biophysical Research Communications, 1989, 164, 1358-1365.	2.1	152
155	Preferential human eosinophil chemotactic activity of the platelet-activating factor (PAF) 1-0-hexadecyl-2-acetyl-sn-glyceryl-3-phosphocholine (AGEPC). Journal of Clinical Immunology, 1987, 7, 179-184.	3.8	63