Swati Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yesâ€Associated Protein Is Crucial for Constitutive Androstane Receptorâ€Driven Hepatocyte Proliferation But Not for Induction of Drug Metabolism Genes in Mice. Hepatology, 2021, 73, 2005-2022.	7.3	13
2	Drosophila tubulin polymerization promoting protein mutants reveal pathological correlates relevant to human Parkinson's disease. Scientific Reports, 2021, 11, 13614.	3.3	7
3	The microtubule regulator <i>ringer</i> functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes and Development, 2020, 34, 194-208.	5.9	13
4	Tubulin Polymerization Promoting Protein, Ringmaker, and MAP1B Homolog Futsch Coordinate Microtubule Organization and Synaptic Growth. Frontiers in Cellular Neuroscience, 2019, 13, 192.	3.7	12
5	Pharmacologic Inhibition of Epidermal Growth Factor Receptor Suppresses Nonalcoholic Fatty Liver Disease in a Murine Fastâ€Food Diet Model. Hepatology, 2019, 70, 1546-1563.	7.3	37
6	Hepatocyteâ€specific YAP deletion suppresses hepatocyte proliferation and hepatomegaly induced by CAR agonist, TCPOBOP (1,4â€Bis [2â€(3,5â€Dichloropyridyloxy)] benzene), in mice. FASEB Journal, 2019, 33, 662.72.	0.5	0
7	Coordinated Regulation of Axonal Microtubule Organization and Transport by Drosophila Neurexin and BMP Pathway. Scientific Reports, 2018, 8, 17337.	3.3	9
8	A versatile genetic tool to study midline glia function in the Drosophila CNS. Developmental Biology, 2017, 429, 35-43.	2.0	5
9	Neurexin, Neuroligin and Wishful Thinking coordinate synaptic cytoarchitecture and growth at neuromuscular junctions. Molecular and Cellular Neurosciences, 2017, 78, 9-24.	2.2	32
10	Drosophila Ringmaker regulates microtubule stabilization and axonal extension during embryonic development. Journal of Cell Science, 2016, 129, 3282-94.	2.0	12
11	Genetic aspects of autism spectrum disorders: insights from animal models. Frontiers in Cellular Neuroscience, 2014, 8, 58.	3.7	111
12	<i>Drosophila</i> Neuroligin 2 is Required Presynaptically and Postsynaptically for Proper Synaptic Differentiation and Synaptic Transmission. Journal of Neuroscience, 2012, 32, 16018-16030.	3.6	60
13	A Laminin G-EGF-Laminin G Module in Neurexin IV Is Essential for the Apico-Lateral Localization of Contactin and Organization of Septate Junctions. PLoS ONE, 2011, 6, e25926.	2.5	9
14	<i>Drosophila</i> Neurexin IV Interacts with Roundabout and Is Required for Repulsive Midline Axon Guidance. Journal of Neuroscience, 2010, 30, 5653-5667.	3.6	33
15	Neurexin IV and Wrapper interactions mediate <i>Drosophila</i> midline glial migration and axonal ensheathment. Development (Cambridge), 2009, 136, 1147-1157.	2.5	43
16	Glial ensheathment of peripheral axons in <i>Drosophila</i> . Journal of Neuroscience Research, 2008, 86, 1189-1198.	2.9	25
17	Septate junctions are required for ommatidial integrity and blood–eye barrier function in Drosophila. Developmental Biology, 2008, 317, 585-599.	2.0	32
18	Neuron-Glial Interactions in Blood-Brain Barrier Formation. Annual Review of Neuroscience, 2007, 30, 235-258.	10.7	176

#	Article	IF	CITATIONS
19	Organization and Function of Septate Junctions: An Evolutionary Perspective. Cell Biochemistry and Biophysics, 2006, 46, 65-78.	1.8	118
20	Axonal Ensheathment and Septate Junction Formation in the Peripheral Nervous System of Drosophila. Journal of Neuroscience, 2006, 26, 3319-3329.	3.6	98
21	Drosophila contactin, a homolog of vertebrate contactin, is required for septate junction organization and paracellular barrier function. Development (Cambridge), 2004, 131, 4931-4942.	2.5	134