Miroslava Schaffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1795885/publications.pdf

Version: 2024-02-01

46 papers 4,048 citations

201674 27 h-index 302126 39 g-index

56 all docs 56
docs citations

56 times ranked 4627 citing authors

#	Article	IF	Citations
1	Highâ€Yield Production, Characterization, and Functionalization of Recombinant Magnetosomes in the Synthetic Bacterium <i>Rhodospirillum rubrum "magneticumâ€</i> . Advanced Biology, 2021, 5, e2101017.	2.5	12
2	Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, 2021, 184, 3643-3659.e23.	28.9	76
3	Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1069-1080.	7.1	68
4	Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nature Protocols, 2020, 15, 2041-2070.	12.0	114
5	A helical inner scaffold provides a structural basis for centriole cohesion. Science Advances, 2020, 6, eaaz4137.	10.3	116
6	Architecture of the centriole cartwheelâ€containing region revealed by cryoâ€electron tomography. EMBO Journal, 2020, 39, e106246.	7.8	32
7	Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. ELife, 2020, 9, .	6.0	80
8	A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 2019, 16, 757-762.	19.0	165
9	The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins. Molecular Biology of the Cell, 2019, 30, 2827-2837.	2.1	14
10	Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants, 2019, 5, 436-446.	9.3	114
11	In situ Microfluidic Cryofixation for Cryo Focused Ion Beam Milling and Cryo Electron Tomography. Scientific Reports, 2019, 9, 19133.	3.3	18
12	Molecular and structural architecture of polyQ aggregates in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3446-E3453.	7.1	68
13	Cryo-FIB: Overcoming the Hurdle of Sample Preparation for In Situ Cryo-Electron Tomography. Microscopy and Microanalysis, 2018, 24, 2326-2327.	0.4	0
14	Cryo-FIB Lamella Milling: A Comprehensive Technique to Prepare Samples of Both Plunge- and High-pressure Frozen-hydrated Specimens for in situ Studies Microscopy and Microanalysis, 2018, 24, 820-821.	0.4	5
15	Pleomorphic linkers as ubiquitous structural organizers of vesicles in axons. PLoS ONE, 2018, 13, e0197886.	2.5	34
16	Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature, 2018, 561, 561-564.	27.8	169
17	In situ architecture of the algal nuclear pore complex. Nature Communications, 2018, 9, 2361.	12.8	107
18	Cryo-electron microscopy of an extremely halophilic microbe: technical aspects. Extremophiles, 2017, 21, 393-398.	2.3	5

#	Article	lF	Citations
19	Determining the bacterial cell biology of Planctomycetes. Nature Communications, 2017, 8, 14853.	12.8	175
20	Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 2017, 8, 14516.	12.8	131
21	The Eukaryotic CO2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization. Cell, 2017, 171, 148-162.e19.	28.9	298
22	Cryo-FIB Lift-out Sample Preparation Using a Novel Cryo-gripper Tool. Microscopy and Microanalysis, 2017, 23, 844-845.	0.4	2
23	Cryoâ€electron tomographyâ€"the cell biology that came in from the cold. FEBS Letters, 2017, 591, 2520-2533.	2.8	56
24	Charting Molecular Landscapes Using Cryo-Electron Tomography. Microscopy Today, 2017, 25, 26-31.	0.3	0
25	Proteasomes tether to two distinct sites at the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13726-13731.	7.1	123
26	Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. Journal of Structural Biology, 2017, 197, 73-82.	2.8	216
27	The structure of the COPI coat determined within the cell. ELife, 2017, 6, .	6.0	152
28	Cryo-FIB Sample Preparation for Cryo-ET With the Volta Phase Plate. Microscopy and Microanalysis, 2016, 22, 72-73.	0.4	0
29	Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms. Biophysical Journal, 2016, 110, 850-859.	0.5	21
30	Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science, 2016, 351, 969-972.	12.6	493
31	In Situ Tomography of Membrane Proteins Enabled by Advanced Cryo-FIB Sample Preparation and Phase Plate Imaging. Microscopy and Microanalysis, 2015, 21, 1119-1120.	0.4	2
32	Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. ELife, 2015, 4, .	6.0	224
33	In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11264-11269.	7.1	94
34	Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-electron Tomography. Bio-protocol, 2015, 5, .	0.4	105
35	Structural Cell Biology: Preparing Specimens for Cryo-Electron Tomography Using Focused-Ion-Beam Milling. Microscopy and Microanalysis, 2014, 20, 1222-1223.	0.4	0
36	Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling. Ultramicroscopy, 2014, 143, 15-23.	1.9	33

#	Article	IF	Citations
37	Opening Windows into the Cell: Focused-Ion-Beam Milling for Cryo-Electron Tomography. Biophysical Journal, 2014, 106, 600a.	0.5	3
38	Phase-Contrast Cryo-Electron Tomography of Primary Cultured Neuronal Cells. Microscopy and Microanalysis, 2014, 20, 208-209.	0.4	0
39	Opening Windows into the Cell: Focused Ion Beam Micromachining of Eukaryotic Cells for Cryo-Electron Tomography. Biophysical Journal, 2013, 104, 353a-354a.	0.5	1
40	Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Current Opinion in Structural Biology, 2013, 23, 771-777.	5.7	179
41	Direct insight into Grain Boundary Reconstruction in Polycrystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Cu</mml:mi><mml:mo><mml:mi>Ga</mml:mi></mml:mo><mml:mi>Ga<td>ET@.\$1 1 0</td><td>.7%4314 rgB</td></mml:mi></mml:math>	ET @.\$ 1 1 0	.7 %4 314 rgB
42	Atomic Resolution. Physical Review Letters, 2012, 108, 075502. Confined and Chemically Flexible Grain Boundaries in Polycrystalline Compound Semiconductors. Advanced Energy Materials, 2012, 2, 992-998.	19.5	84
43	Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy, 2012, 114, 62-71.	1.9	321
44	Block lift-out sample preparation for 3D experiments in a dual beam focused ion beam microscope. Mikrochimica Acta, 2008, 161, 421-425.	5.0	24
45	Automated X-Ray Elemental Analysis in Three Dimensions Using a Dual Beam-Focused Ion Beam System. Praktische Metallographie/Practical Metallography, 2007, 44, 248-250.	0.3	1
46	The Eukaryotic CO22concentrating Organelle Is Liquiddlike and Exhibits Dynamic Reorganization. SSRN Electronic Journal, 0, , .	0.4	0