Janine Cossy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1795264/publications.pdf

Version: 2024-02-01

28274 60623 14,106 478 55 81 citations h-index g-index papers 681 681 681 9131 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Niâ€Catalyzed Crossâ€Coupling of 2â€lodoglycals and 2â€lodoribals with Grignard Reagents: A Route to 2― <i>C</i> â€Glycosides and 2'― <i>C</i> â€Nucleosides. Chemistry - A European Journal, 2022, , .	3.3	8
2	Selective Photochemical Continuous Flow Benzylic Monochlorination. Organic Process Research and Development, 2022, 26, 1496-1505.	2.7	1
3	Plasma flow chemistry for direct <i>N</i> -acylation of amines by esters. Chemical Communications, 2022, 58, 7281-7284.	4.1	10
4	Cascade Cope/Winstein Rearrangements: Synthesis of Azido-Cycloheptadienes from Dialkenylcyclopropanes Possessing a Vinyl Azide. Organic Letters, 2022, 24, 4954-4959.	4.6	4
5	Ringâ€opening of azetidiniums by nucleophiles. Synthesis of polysubstituted linear amines. Chirality, 2021, 33, 5-21.	2.6	13
6	Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chemical Society Reviews, 2021, 50, 658-666.	38.1	64
7	Cobaltâ€Catalyzed 1,4â€Aryl Migration/Desulfonylation Cascade: Synthesis of αâ€Aryl Amides. Chemistry - A European Journal, 2021, 27, 4004-4008.	3.3	10
8	Photochemical Hydrothiolation of Amorphadiene and Formal Synthesis of Artemisinin via a Pummerer Rearrangement. Organic Letters, 2021, 23, 5593-5598.	4.6	7
9	Cross-Coupling of Ketone Enolates with Grignard and Zinc Reagents with First-Row Transition Metal Catalysts. ACS Catalysis, 2021, 11, 5736-5761.	11.2	21
10	Palladium-Catalyzed Regioselective Allylic Oxidation of Amorphadiene, a Precursor of Artemisinin. Journal of Organic Chemistry, 2021, 86, 7603-7608.	3.2	4
11	Enantioselective Crossâ€couplings between Halide Derivatives and Organometallics by Using Iron and Cobalt Catalysts: Formation of Câ^'C Bonds. Chemistry - A European Journal, 2021, 27, 11021-11029.	3.3	13
12	Radical Addition of SF ₅ Cl to Cyclopropenes: Synthesis of (Pentafluorosulfanyl)cyclopropanes. Organic Letters, 2021, 23, 5491-5495.	4.6	19
13	Frontispiece: Enantioselective Crossâ€couplings between Halide Derivatives and Organometallics by Using Iron and Cobalt Catalysts: Formation of Câ°°C Bonds. Chemistry - A European Journal, 2021, 27, .	3.3	0
14	Synthesis of Azocanes from Piperidines via an Azetidinium Intermediate. Chemistry - A European Journal, 2021, 27, 16325-16328.	3.3	1
15	Asymmetric Transfer Hydrogenation of <i>gem</i> â€Difluorocyclopropenyl Esters: Access to Enantioenriched <i>gem</i> â€Difluorocyclopropanes. Angewandte Chemie, 2020, 132, 18663-18667.	2.0	6
16	Copper-Catalyzed Cross-Coupling between Alkyl (Pseudo)halides and Bicyclopentyl Grignard Reagents. Organic Letters, 2020, 22, 6021-6025.	4.6	10
17	Azetidiniums: Ringâ€Expansion to Pyrrolidines, Piperidines, Azepanes, and Azocanes. European Journal of Organic Chemistry, 2020, 2020, 7103-7118.	2.4	14
18	Frontispiece: Cobaltâ€Catalyzed αâ€Arylation of Substituted αâ€Bromo αâ€Fluoro βâ€Lactams with Diaryl Zinc Reagents: Generalization to Functionalized Bromo Derivatives. Chemistry - A European Journal, 2020, 26, .	3.3	0

#	Article	IF	Citations
19	<i>N</i> -(Hetero)arylations with Metalated (Hetero)aryls: Recent Advances in First-Row Transition-Metal-Mediated Cross-Couplings. ACS Catalysis, 2020, 10, 10127-10148.	11.2	17
20	Synthesis of Spongidepsin and Analogs. European Journal of Organic Chemistry, 2020, 2020, 7417-7428.	2.4	1
21	Micrometric Monodisperse Solid Foams as Complete Photonic Bandgap Materials. ACS Applied Materials & Description (1988) Mate	8.0	9
22	Asymmetric Transfer Hydrogenation of <i>gem</i> â€Difluorocyclopropenyl Esters: Access to Enantioenriched <i>gem</i> â€Difluorocyclopropanes. Angewandte Chemie - International Edition, 2020, 59, 18505-18509.	13.8	30
23	Chemo- and Diastereoselective Hydrosilylation of Amorphadiene toward the Synthesis of Artemisinin. Journal of Organic Chemistry, 2020, 85, 9607-9613.	3.2	5
24	Cobalt-Catalyzed Cross-Couplings between Alkyl Halides and Grignard Reagents. Accounts of Chemical Research, 2020, 53, 1351-1363.	15.6	69
25	Crystallization-Induced Diastereoisomer Transformation of Dihydroartemisinic Aldehyde with the Betti Base. Organic Process Research and Development, 2020, 24, 850-855.	2.7	12
26	Microfluidics Mediated Production of Foams for Biomedical Applications. Micromachines, 2020, 11, 83.	2.9	26
27	A One-Pot Iodo-Cyclization/Transition Metal-Catalyzed Cross-Coupling Sequence: Synthesis of Substituted Oxazolidin-2-ones from <i>N</i> -Boc-allylamines. Organic Letters, 2020, 22, 3870-3874.	4.6	3
28	Cobaltâ€Catalyzed αâ€Arylation of Substituted αâ€Bromo αâ€Fluoro βâ€Lactams with Diaryl Zinc Reagents: Generalization to Functionalized Bromo Derivatives. Chemistry - A European Journal, 2020, 26, 13163-13169.	3.3	12
29	Stable liquid foams from a new polyfluorinated surfactant. Chemical Communications, 2020, 56, 5807-5810.	4.1	9
30	Cobalt-Catalyzed α-Arylation of Substituted α-Halogeno β-Lactams. Organic Letters, 2019, 21, 6241-6244.	4.6	16
31	Synthesis of 12â€ <i>epi</i> å€Protopanaxadiol and Formal Synthesis of Ginsenoside Chikusetsusaponinâ€LT ₈ . European Journal of Organic Chemistry, 2019, 2019, 5970-5973.	2.4	7
32	Metalâ€Catalyzed Cyclization: Synthesis of (Benzo)morpholines and (Benzo)[1,4]dihydrooxazines. European Journal of Organic Chemistry, 2019, 2019, 7513-7531.	2.4	8
33	Effects of <i>Asparagopsis taxiformis</i> metabolites on the feeding behaviour of postâ€larval <i>Acanthurus triostegus</i> . Journal of Fish Biology, 2019, 95, 1355-1358.	1.6	7
34	Rhodium(III)-Catalyzed C(sp ²)â€"H Functionalization of Cyclobutenes. Access to Cyclobuta[<i>c</i>]pyridones and -pyridines. Organic Letters, 2019, 21, 8364-8368.	4.6	20
35	Synthesis of 2-Fluoroalkyl 4-Substituted Azepanes. European Journal of Organic Chemistry, 2019, 2019, 5497-5507.	2.4	6
36	Synthesis of Highly Substituted Azepanones from 2 <i>H</i> -Azirines by a Stepwise Annulation/Ring-Opening Sequence. Organic Letters, 2019, 21, 3589-3593.	4.6	18

#	Article	IF	Citations
37	Introduction of Cyclopropyl and Cyclobutyl Ring on Alkyl Iodides through Cobalt-Catalyzed Cross-Coupling. Organic Letters, 2019, 21, 2285-2289.	4.6	30
38	Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes. Beilstein Journal of Organic Chemistry, 2019, 15, 333-350.	2.2	3
39	Synthesis of amorpha-4,11-diene from dihydroartemisinic acid. Tetrahedron, 2019, 75, 743-748.	1.9	4
40	Assembly of the Entire Carbon Backbone of a Stereoisomer of the Antitumor Marine Natural Product Hemicalide. Chemistry - A European Journal, 2019, 25, 2745-2749.	3.3	6
41	Asymmetric Synthesis of \hat{l} ±-Quaternary \hat{l} 3-Lactams through Palladium-Catalyzed Asymmetric Allylic Alkylation. Organic Letters, 2019, 21, 603-607.	4.6	31
42	α-Arylation of Amides from α-Halo Amides Using Metal-Catalyzed Cross-Coupling Reactions. Synthesis, 2019, 51, 178-184.	2.3	8
43	A novel diarylethene-based photoswitchable chelator for reversible release and capture of Ca2+ in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 181-187.	3.9	6
44	Highly Enantioselective, Baseâ€Free Synthesis of αâ€Quaternary Succinimides through Catalytic Asymmetric Allylic Alkylation. Chemistry - A European Journal, 2018, 24, 8076-8080.	3.3	19
45	Synthesis of αâ€(Trifluoromethyl)pyridazine Derivatives. European Journal of Organic Chemistry, 2018, 2018, 3541-3553.	2.4	15
46	Palladiumâ€Catalyzed Asymmetric Allylic Alkylation of 4â€Substituted Isoxazolidinâ€5â€ones: Straightforward Access to β ^{2,2} â€Amino Acids. Chemistry - A European Journal, 2018, 24, 4810-4814.	3.3	50
47	Intramolecular Diels–Alder Approaches to the Decalin Core of Verongidolide: The Origin of the exo-Selectivity, a DFT Analysis. Journal of Organic Chemistry, 2018, 83, 5975-5985.	3.2	15
48	Nickel-Catalyzed System for the Cross-Coupling of Alkenyl Methyl Ethers with Grignard Reagents under Mild Conditions. Organic Letters, 2018, 20, 1815-1818.	4.6	23
49	Rhodiumâ€Catalyzed Cyclization of <i>O</i> ,ï‰â€Unsaturated Alkoxyamines: Formation of Oxygenâ€Containing Heterocycles. Angewandte Chemie, 2018, 130, 583-587.	2.0	12
50	Stereoselective Ringâ€Opening of <i>gem</i> â€Difluorocyclopropanes: An Entry to Stereoâ€defined (<i>E</i> , <i>E</i>)â€and (<i>E</i> , <i>E</i>)â€Conjugated Fluorodienes. Chemistry - A European Journal, 2018, 24, 332-336.	3.3	19
51	Rhodiumâ€Catalyzed Cyclization of <i>O</i> ,ï‰â€Unsaturated Alkoxyamines: Formation of Oxygenâ€Containing Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 574-578.	13.8	29
52	A One-Pot Reaction toward the Diastereoselective Synthesis of Substituted Morpholines. Organic Letters, 2018, 20, 7419-7423.	4.6	22
53	Selective Deprotection of N-Tosyl Alkoxyamines Using Bistrifluoromethane Sulfonimide: Formation of Oxime Ethers. Synlett, 2018, 29, 2417-2421.	1.8	3
54	Synthesis of Optically Active α-Trifluoromethylamines by Rearrangement of β-Amino-α-trifluoromethyl Alcohols. Organic Letters, 2018, 20, 6017-6021.	4.6	9

#	Article	IF	CITATIONS
55	Access to Enantio-enriched Substituted α-Trifluoromethyl Azepanes from <scp>l</scp> -Proline. Organic Letters, 2018, 20, 5019-5022.	4.6	18
56	[3,3]â€Sigmatropic Rearrangement of Cyclopropenylcarbinyl Cyanates: Access to Alkylidene(aminocyclopropane) Derivatives. Chemistry - A European Journal, 2018, 24, 15104-15111.	3.3	5
57	Cobalt-Catalyzed (Hetero)arylation of Saturated Cyclic Amines with Grignard Reagents. Molecules, 2018, 23, 1449.	3.8	9
58	Synthesis of Alkylidene(<i>gem</i> -Difluorocyclopropanes) from Propargyl Glycolates by a One-Pot Difluorocyclopropenation/Ireland–Claisen Rearrangement Sequence. Journal of Organic Chemistry, 2017, 82, 3965-3975.	3.2	16
59	Synthesis of Functionalized 4â€Fluoropyridazines. Asian Journal of Organic Chemistry, 2017, 6, 927-935.	2.7	23
60	Rhodium(III)-Catalyzed C–H Activation/Heterocyclization as a Macrocyclization Strategy. Synthesis of Macrocyclic Pyridones. Organic Letters, 2017, 19, 2706-2709.	4.6	41
61	Diastereoselective Synthesis of <i>trans</i> \$\frac{1}{2},3\hat{0}\text{EDiaryl(heteroaryl)}\hat{0}\hat{0}\hat{0}\hat{0}\text{S},6\hat{0}\hat{0}\text{Hipydropyrans by an Allylboration/Ring}\hat{0}\text{Closing}\hat{0}\text{Ediag}Metathesis Sequence. European Journal of Organic Chemistry, 2017, 2017, 3343-3354.	2.4	2
62	Iron-Catalyzed C–C Cross-Couplings Using Organometallics. Topics in Current Chemistry Collections, 2017, , 265-338.	0.5	2
63	In situ targeted activation of an anticancer agent using ultrasound-triggered release of composite droplets. European Journal of Medicinal Chemistry, 2017, 142, 2-7.	5.5	7
64	A Palladium-Catalyzed Asymmetric Allylic Alkylation Approach to \hat{l} ±-Quaternary \hat{l} 3-Butyrolactones. Organic Letters, 2017, 19, 14-17.	4.6	46
65	Cobalt-Catalyzed Cross-Coupling of α-Bromo Amides with Grignard Reagents. Organic Letters, 2017, 19, 6068-6071.	4.6	27
66	Frontispiece: Selective ¹⁹ Fâ€Labeling of Functionalized Carboxylic Acids with Difluoromethyl Diazomethane (CF ₂ HCHN ₂). Chemistry - A European Journal, 2017, 23, .	3.3	0
67	Front Cover: Synthesis of N -Nitroso CHF2 -Pyrazolines and Their Transformation into CHF2 -Isoxazolines and -Pyrazoles (Eur. J. Org. Chem. 41/2017). European Journal of Organic Chemistry, 2017, 2017, 6099-6099.	2.4	1
68	Selective ¹⁹ Fâ€Labeling of Functionalized Carboxylic Acids with Difluoromethyl Diazomethane (CF ₂ HCHN ₂). Chemistry - A European Journal, 2017, 23, 13279-13283.	3.3	22
69	Selective Generation of (1 <i>H</i> à€1,2,4â€Triazolâ€1â€yl)methyl Carbanion and Condensation with Carbonyl Compounds. European Journal of Organic Chemistry, 2017, 2017, 6991-6996.	2.4	2
70	Ironâ€Catalyzed Synthesis of αâ€Dienyl Five―and Sixâ€Membered Nâ€Heterocycles. European Journal of Organ Chemistry, 2017, 2017, 6160-6167.	nic, 2.4	5
71	Synthesis of <i>N</i> â€Nitroso CHF ₂ â€Pyrazolines and Their Transformation into CHF ₂ â€Isoxazolines and â€Pyrazoles. European Journal of Organic Chemistry, 2017, 2017, 6114-6120.	2.4	23
72	Iron-Catalyzed Synthesis of Sulfur-Containing Heterocycles. Journal of Organic Chemistry, 2017, 82, 4020-4036.	3.2	20

#	Article	IF	CITATIONS
73	Synthesis of CF ₂ Hâ€Substituted Pyrazolines by [3+2] Cycloaddition between CF ₂ HCHN ₂ and Electronâ€Deficient Alkenes. European Journal of Organic Chemistry, 2017, 2017, 266-270.	2.4	41
74	Synthesis of Substituted α-Trifluoromethyl Piperidinic Derivatives. Molecules, 2017, 22, 483.	3.8	7
75	Total Synthesis of Putative 11-epi-Lyngbouilloside Aglycon. Frontiers in Chemistry, 2016, 4, 34.	3.6	4
76	Design, Synthesis, and Binding Affinity Evaluation of Hoechst 33258 Derivatives for the Development of Sequence-Specific DNA-Based Asymmetric Catalysts. ACS Catalysis, 2016, 6, 3096-3105.	11.2	51
77	Synthetic Studies toward the C14–C29 Fragment of Mirabalin. Organic Letters, 2016, 18, 4534-4537.	4.6	14
78	Synthesis of the Acyclic Carbon Skeleton of Filipin III. Journal of Organic Chemistry, 2016, 81, 8206-8221.	3.2	20
79	Gold-Catalyzed Rearrangement of (Silylcyclopropenyl)methyl Ethers into (Silylmethylene)cyclopropanes. Synthesis, 2016, 48, 3165-3174.	2.3	4
80	Synthesis of Fluoroalkyl Pyrazoles from Inâ€Situâ€Generated C ₂ F ₅ CHN ₂ and Electronâ€Deficient Alkenes. European Journal of Organic Chemistry, 2016, 2016, 5485-5493.	2.4	19
81	Front Cover: Synthesis of Fluoroalkyl Pyrazoles from In-Situ-Generated C2 F5 CHN2 and Electron-Deficient Alkenes (Eur. J. Org. Chem. 33/2016). European Journal of Organic Chemistry, 2016, 2016, 5445-5445.	2.4	2
82	Iron-Catalyzed C–C Cross-Couplings Using Organometallics. Topics in Current Chemistry, 2016, 374, 49.	5.8	42
83	Selective Tsuji–Trost type C-allylation of hydrazones: a straightforward entry into 4,5-dihydropyrazoles. Chemical Communications, 2016, 52, 14490-14493.	4.1	21
84	Elaboration of Sterically Hindered Î'-Lactones through Ring-Closing Metathesis: Application to the Synthesis of the C1–C27 Fragment of Hemicalide. Journal of Organic Chemistry, 2016, 81, 12275-12290.	3.2	12
85	Rhodium(II) atalyzed Isomerization of Cyclopropenylmethyl Esters into (Acyloxymethylene)cyclopropanes. Chemistry - A European Journal, 2016, 22, 6100-6110.	3.3	11
86	Harnessing Câ [^] H Activation of Benzhydroxamates as a Macrocyclization Strategy: Synthesis of Structurally Diverse Macrocyclic Isoquinolones. Chemistry - A European Journal, 2016, 22, 13469-13473.	3.3	22
87	Expanding biohybrid-mediated asymmetric catalysis into the realm of RNA. Chemical Communications, 2016, 52, 8604-8607.	4.1	22
88	Unexpected Reactivity of Trifluoromethyl Diazomethane (CF3CHN2): Electrophilicity of the Terminal N-Atom. Organic Letters, 2016, 18, 3406-3409.	4.6	57
89	Natural Products Containing Oxygen Heterocyclesâ€"Synthetic Advances Between 1990 and 2015. Advances in Heterocyclic Chemistry, 2016, 119, 107-142.	1.7	23
90	Cobaltâ€Catalyzed Crossâ€Coupling of 3―and 4â€lodopiperidines with Grignard Reagents. Chemistry - A European Journal, 2015, 21, 12797-12803.	3.3	52

#	Article	IF	Citations
91	Ring Contraction of 3â€Hydroxyâ€3â€(trifluoromethyl)piperidines: Synthesis of 2â€Substituted 2â€(Trifluoromethyl)pyrrolidines. Chemistry - A European Journal, 2015, 21, 12876-12880.	3.3	18
92	Beyond catalyst deactivation: cross-metathesis involving olefins containing <i>N</i> -heteroaromatics. Beilstein Journal of Organic Chemistry, 2015, 11, 2223-2241.	2.2	16
93	Synthesis of 2-Aminoindolizines by 1,3-Dipolar Cycloaddition of Pyridinium Ylides with Electron-Deficient Ynamides. Organic Letters, 2015, 17, 2800-2803.	4.6	112
94	Stereoselective Rearrangement of (Trifluoromethyl)prolinols to Enantioenriched 3-Substituted 2-(Trifluoromethyl)piperidines. Organic Letters, 2015, 17, 2916-2919.	4.6	24
95	Synthesis of a stereoisomer of wortmannilactone C—failure andÂsuccess. Tetrahedron, 2015, 71, 5835-5848.	1.9	4
96	Iron-Catalyzed Synthesis of C2 Aryl- and $\langle i \rangle N \langle i \rangle$ -Heteroaryl-Substituted Tetrahydropyrans. Journal of Organic Chemistry, 2015, 80, 12509-12525.	3.2	16
97	Iron- and Indium-Catalyzed Reactions toward Nitrogen- and Oxygen-Containing Saturated Heterocycles. Accounts of Chemical Research, 2015, 48, 761-773.	15.6	68
98	Heck Coupling Using a Vinyliodo-MIDA Boronate: An Efficient and Modular Access to Polyene Frameworks. Organic Letters, 2015, 17, 948-951.	4.6	27
99	Synthetic Approach to Wortmannilactone C. Organic Letters, 2015, 17, 816-819.	4.6	18
100	DNA-cellulose: an economical, fully recyclable and highly effective chiral biomaterial for asymmetric catalysis. Chemical Communications, 2015, 51, 6076-6079.	4.1	33
101	Diastereodivergent Pictet–Spengler Cyclization of Bicyclic <i>N</i> â€Acyliminium Ions: Controlling a Quaternary Stereocenter. European Journal of Organic Chemistry, 2015, 2015, 1273-1282.	2.4	23
102	Intramolecular Cyclopropanation and C–H Insertion Reactions with Metal Carbenoids Generated from Cyclopropenes. Accounts of Chemical Research, 2015, 48, 1021-1031.	15.6	156
103	A fast and switchable microfluidic mixer based on ultrasound-induced vaporization of perfluorocarbon. Lab on A Chip, 2015, 15, 2025-2029.	6.0	19
104	Chemoselective Synthesis of \hat{l}^2 -Ketophosphonates Using Lithiated \hat{l}_{\pm} -(Trimethylsilyl)methylphosphonate. Journal of Organic Chemistry, 2015, 80, 3302-3308.	3.2	11
105	Total Synthesis of (+)-Cryptocaryol A Using a Prins Cyclization/Reductive Cleavage Sequence. Journal of Organic Chemistry, 2015, 80, 8668-8676.	3.2	20
106	Synthesis of Functionalized Alkylidenecyclopropanes by Ireland–Claisen Rearrangement of Cyclopropenylcarbinyl Esters. Organic Letters, 2015, 17, 3786-3789.	4.6	15
107	Asymmetric transfer hydrogenation of \hat{l} ±-amino \hat{l} 2-keto ester hydrochlorides through dynamic kinetic resolution. RSC Advances, 2015, 5, 56815-56819.	3.6	23
108	Synthesis of Aryl Sulfides: Metal-Free C–H Sulfenylation of Electron-Rich Arenes. Organic Letters, 2015, 17, 3898-3901.	4.6	110

#	Article	IF	CITATIONS
109	TFA-promoted direct C–H sulfenylation at the C2 position of non-protected indoles. Chemical Communications, 2015, 51, 13898-13901.	4.1	107
110	Modular, Concise, and Efficient Synthesis of Highly Functionalized 5-Fluoropyridazines by a $[2+1]/[3+2]$ -Cycloaddition Sequence. Organic Letters, 2015, 17, 3414-3417.	4.6	27
111	Grignard Reagents and Nonâ€Precious Metals: Cheap and Ecoâ€Friendly Reagents for Developing Industrial Crossâ€Couplings. A Personal Account. Advanced Synthesis and Catalysis, 2015, 357, 1983-1989.	4.3	38
112	Synthetic Studies toward the C32–C46 Segment of Hemicalide. Assignment of the Relative Configuration of the C36–C42 Subunit. Organic Letters, 2015, 17, 2446-2449.	4.6	19
113	Palladium-catalyzed phosphonylation of pyrazoles substituted byÂelectron-withdrawing groups. Tetrahedron, 2015, 71, 7250-7259.	1.9	9
114	Iridium–SYNPHOS-Catalyzed Hydrogenation through Dynamic Kinetic Resolution of α-Amino β-Keto Ester Hydrochlorides. Synlett, 2014, 25, 2761-2764.	1.8	9
115	QSPR Prediction of the Stability Constants of Gadolinium(III) Complexes for Magnetic Resonance Imaging. Journal of Chemical Information and Modeling, 2014, 54, 2718-2731.	5.4	14
116	Access to Optically Active 3â€Substituted Piperidines by Ring Expansion of Prolinols and Derivatives. Chemistry - A European Journal, 2014, 20, 4516-4525.	3.3	39
117	Triphenylphosphine: a catalyst for the synthesis of C-aryl furanosides from furanosyl halides. Tetrahedron Letters, 2014, 55, 849-852.	1.4	12
118	Synthesis of substituted indenones and indanones by a Suzuki–Miyaura coupling/acid-promoted cyclisation sequence. Organic and Biomolecular Chemistry, 2014, 12, 728-731.	2.8	23
119	Iron- and Cobalt-Catalyzed Arylation of Azetidines, Pyrrolidines, and Piperidines with Grignard Reagents. Organic Letters, 2014, 16, 6160-6163.	4.6	73
120	Lewis Basicity Modulation of <i>N</i> -Heterocycles: A Key for Successful Cross-Metathesis. Organic Letters, 2014, 16, 4972-4975.	4.6	24
121	Diastereo- and enantioselective synthesis of 1,3,5,7-tetraol structural units using a Prins cyclisation–reductive cleavage sequence. Chemical Communications, 2014, 50, 6718-6721.	4.1	12
122	Strength by Joining Methods: Combining Synthesis with NMR, IR, and Vibrational Circular Dichroism Spectroscopy for the Determination of the Relative Configuration in Hemicalide. Chemistry - A European Journal, 2014, 20, 17385-17394.	3.3	23
123	High Spatiotemporal Control of Spontaneous Reactions Using Ultrasound-Triggered Composite Droplets. Journal of the American Chemical Society, 2014, 136, 7205-7208.	13.7	19
124	Recent developments in alkyne borylations. Tetrahedron, 2014, 70, 8431-8452.	1.9	172
125	Lewis Acid Catalyzed Synthesis of Cyclic Carbonates, Precursors of 1,2―and 1,3â€Diols. European Journal of Organic Chemistry, 2014, 2014, 4958-4962.	2.4	12
126	Efficient and Modular Synthesis of New Structurally Diverse Functionalized [⟨i⟩n⟨/i⟩]Paracyclophanes by a Ringâ€Distortion Strategy. Angewandte Chemie - International Edition, 2014, 53, 8705-8708.	13.8	18

#	Article	IF	CITATIONS
127	Isolation, structural determination and synthetic approaches toward amphidinol 3. Natural Product Reports, 2014, 31, 468.	10.3	18
128	Synthetic Strategy toward the C44–C65 Fragment of Mirabalin. Organic Letters, 2014, 16, 2390-2393.	4.6	21
129	Enantioselective Synthesis and Physicochemical Properties of Libraries of 3â€Amino―and 3â€Amidofluoropiperidines. Chemistry - A European Journal, 2014, 20, 3813-3824.	3.3	27
130	Synthesis of LY503430 by using a selective rearrangement of \hat{l}^2 -amino alcohols induced by DAST. Arkivoc, 2014, 2014, 239-255.	0.5	5
131	Chemoselective alkynylation of N-sulfonylamides versus amides and carbamates – Synthesis of tetrahydropyrazines. Chemical Communications, 2013, 49, 3303.	4.1	70
132	Tandem Suzuki-Miyaura Coupling/Acid-Catalyzed Cyclization between Vinyl Ether Boronates and Vinyl Halides: A Concise Approach to Polysubstituted Furans. Organic Letters, 2013, 15, 3840-3843.	4.6	24
133	Iridium-Catalyzed Hydrogen Transfer: Synthesis of Substituted Benzofurans, Benzothiophenes, and Indoles from Benzyl Alcohols. Organic Letters, 2013, 15, 3876-3879.	4.6	49
134	Catalytic Asymmetric Allylic Alkylation of 3â€Arylated Piperidinâ€2â€ones. European Journal of Organic Chemistry, 2013, 2013, 4979-4985.	2.4	13
135	Synthetic Studies on Hemicalide: Development of a Convergent Approach toward the C1–C25 Fragment. Organic Letters, 2013, 15, 4734-4737.	4.6	11
136	Copper-catalysed amidation of 2-chloro-pyridines. RSC Advances, 2013, 3, 18787.	3.6	19
137	FeCl ₃ \hat{A} ·6H ₂ O, a Catalyst for the Diastereoselective Synthesis of <i>ci>ci>< i>-Isoxazolidines from <i>N</i>-Protected Î'-Hydroxylamino Allylic Acetates. Journal of Organic Chemistry, 2013, 78, 10273-10287.</i>	3.2	30
138	Cobalt-Catalyzed Diastereoselective Synthesis of $\langle i \rangle C \langle i \rangle$ -Furanosides. Total Synthesis of (\hat{a}^{γ}) -Isoaltholactone. Journal of Organic Chemistry, 2013, 78, 11807-11814.	3.2	58
139	Palladium-Catalyzed Phosphonylation: Synthesis of C3-, C4-, and C5-Phosphonylated Pyrazoles. Organic Letters, 2013, 15, 5550-5553.	4.6	16
140	Diastereoselective synthesis of the C14–C29 fragment of amphidinol 3. Organic and Biomolecular Chemistry, 2013, 11, 6829.	2.8	14
141	Non-enzymatic acylative kinetic resolution of primary allylic amines. Chemical Communications, 2013, 49, 9338.	4.1	12
142	DNA vs. Mirrorâ€Image DNA: A Universal Approach to Tune the Absolute Configuration in DNAâ€Based Asymmetric Catalysis. Angewandte Chemie - International Edition, 2013, 52, 11546-11549.	13.8	76
143	Synthesis of 3â€Hydroxypipecolic Acids. European Journal of Organic Chemistry, 2013, 2013, 809-829.	2.4	22
144	Palladium atalyzed Asymmetric Allylic Alkylation of Cyclic Dienol Carbonates: Efficient Route to Enantioenriched γâ€Butenolides Bearing an All arbon αâ€Quaternary Stereogenic Center. Angewandte Chemie - International Edition, 2013, 52, 1257-1261.	13.8	107

#	Article	IF	CITATIONS
145	Synthesis of Functionalized Allenamides from Ynamides by Enolate Claisen Rearrangement. Organic Letters, 2013, 15, 1626-1629.	4.6	37
146	XtalFluor-E, an Efficient Coupling Reagent for Amidation of Carboxylic Acids. Organic Letters, 2013, 15, 902-905.	4.6	39
147	Iron-catalyzed cross-coupling between C-bromo mannopyranoside derivatives and a vinyl Grignard reagent: toward the synthesis of the C31–C52 fragment of amphidinol 3. Tetrahedron, 2013, 69, 7759-7770.	1.9	45
148	A Sonogashira Cross-Coupling/5-exo-dig Cyclization/Ionic Hydrogenation Sequence: Synthesis of 4-Substituted 3-Azabicyclo[3.1.0]hexan-2-ones from 2-Iodocyclopropanecarboxamides. Journal of Organic Chemistry, 2013, 78, 5794-5799.	3.2	13
149	Palladium-Catalyzed Allylic Alkylation of Allyl Dienol Carbonates: Reactivity, Regioselectivity, Enantioselectivity, and Synthetic Applications. Synlett, 2013, 24, 2350-2364.	1.8	37
150	Synthesis of complex oxygenated heterocycles. Pure and Applied Chemistry, 2013, 85, 1203-1213.	1.9	6
151	Lyngbouilloside and Related Macrolides from Marine Cyanobacteria. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2
152	Spiroketals: Toward the synthesis of 39-oxobistramide K. Pure and Applied Chemistry, 2012, 84, 1567-1574.	1.9	5
153	Efficient Synthesis of Substituted 3â€Azabicyclo[3.1.0]hexanâ€2â€ones from 2â€lodocyclopropanecarboxamides Using a Copperâ€Free Sonogashira Coupling. Chemistry - A European Journal, 2012, 18, 16716-16727.	3.3	18
154	Synthesis of Two Neurokinin NK1 Receptor Antagonists: (+)-L-733,060 and (-)-L-733,061. Heterocycles, 2012, 86, 89.	0.7	9
155	Catalysis-based enantioselective total synthesis of myxothiazole Z, (14S)-melithiazole G and (14S)-cystothiazole F. Chemical Communications, 2012, 48, 10508.	4.1	16
156	Diastereoselective synthesis of the C17–C30 fragment of amphidinol 3. Organic and Biomolecular Chemistry, 2012, 10, 9418.	2.8	18
157	Diastereoselective Metalâ€Catalyzed Synthesis of <i>C</i> â€Aryl and <i>C</i> âfth in Câfth i	13.8	153
158	Highly Efficient Stereoselective Catalytic C(sp ³)H Insertions with Donor Rhodium Carbenoids Generated from Cyclopropenes. Angewandte Chemie - International Edition, 2012, 51, 11540-11544.	13.8	51
159	Fluorine as a Regiocontrol Element in the Ring Opening of Bicyclic Aziridiniums. Helvetica Chimica Acta, 2012, 95, 2265-2277.	1.6	13
160	Synthesis and evaluation of new polyenic compounds as potential PPARs modulators. Organic and Biomolecular Chemistry, 2012, 10, 6169.	2.8	9
161	Kinetic resolution of propargylamines via a highly enantioselective non-enzymatic N-acylation process. Chemical Communications, 2012, 48, 10511.	4.1	19
162	Two-Step One-Pot Synthesis of Benzoannulated Spiroacetals by Suzuki–Miyaura Coupling/Acid-Catalyzed Spiroacetalization. Organic Letters, 2012, 14, 4998-5001.	4.6	19

#	Article	IF	Citations
163	Stereoselective Synthesis of Conjugated Trienols from Allylic Alcohols and 1-lodo-1,3-dienes. Organic Letters, 2012, 14, 5594-5597.	4.6	24
164	Rhodium(iii)-catalyzed allylic C–H bond amination. Synthesis of cyclic amines from ω-unsaturated N-sulfonylamines. Chemical Communications, 2012, 48, 10745.	4.1	95
165	Ring Expansion of Cyclic β-Amino Alcohols Induced by Diethylaminosulfur Trifluoride: Synthesis of Cyclic Amines with a Tertiary Fluorine at C3. Journal of Organic Chemistry, 2012, 77, 6087-6099.	3.2	40
166	Total Synthesis of Nominal Lyngbouilloside Aglycon. Organic Letters, 2012, 14, 314-317.	4.6	37
167	Catalytic Diastereoselective Reduction of \hat{l}_{\pm} , \hat{l}_{-} Epoxy and \hat{l}_{\pm} , \hat{l}_{-} Aziridinyl Ynones. Organic Letters, 2012, 14, 516-519.	4.6	30
168	Access to Optically Active 3â€Aminopiperidines by Ring Expansion of Prolinols: Thermodynamic versus Kinetic Control. European Journal of Organic Chemistry, 2012, 2012, 2023-2040.	2.4	34
169	Synthesis of Amines from Alcohols in a Nonepimerizing Oneâ€Pot Sequence – Synthesis of Bioactive Compounds: Cinacalcet and Dexoxadrol. European Journal of Organic Chemistry, 2012, 2012, 2990-3000.	2.4	11
170	First Intramolecular Alkylation of Nitriles with Primary and Secondary Alcohols Catalyzed by Iridium Complexes. European Journal of Organic Chemistry, 2012, 2012, 4453-4456.	2.4	32
171	A Modular and Scalable Oneâ€Pot Synthesis of Polysubstituted Furans. Angewandte Chemie - International Edition, 2012, 51, 7562-7566.	13.8	64
172	Gold(I)â€Catalysed Cycloisomerisation of 1,6â€Cyclopropeneâ€enes. Chemistry - A European Journal, 2012, 18, 7810-7822.	3.3	69
173	Formal Synthesis of Dictyostatin and Synthesis of Two Dictyostatin Analogues. Chemistry - A European Journal, 2012, 18, 11788-11797.	3.3	16
174	Ritter Reaction: Recent Catalytic Developments. European Journal of Organic Chemistry, 2012, 2012, 19-28.	2.4	109
175	(<i>E</i>)â€Dimethyl 2â€Oxopentâ€3â€enylphosphonate: An Excellent Substrate for Crossâ€Metathesis – Easy Access to Functionalized Heterocycles. European Journal of Organic Chemistry, 2012, 2012, 801-809.	[/] 2.4	11
176	Synthesis of a Platform To Access Bistramides and Their Analogues. Organic Letters, 2011, 13, 6018-6021.	4.6	30
177	Access to Optically Active 3-Azido- and 3-Aminopiperidine Derivatives by Enantioselective Ring Expansion of Prolinols. Organic Letters, 2011, 13, 4442-4445.	4.6	38
178	Asymmetric Synthesis of an Antagonist of Neurokinin Receptors: SSR 241586. Journal of Organic Chemistry, 2011, 76, 2594-2602.	3.2	31
179	Copper-Free Sonogashira Coupling of Cyclopropyl lodides with Terminal Alkynes. Organic Letters, 2011, 13, 956-959.	4.6	38
180	Monoalkylation of Acetonitrile by Primary Alcohols Catalyzed by Iridium Complexes. Organic Letters, 2011, 13, 4084-4087.	4.6	65

#	Article	IF	Citations
181	Mild Nonepimerizing $\langle i \rangle N \langle l i \rangle$ -Alkylation of Amines by Alcohols without Transition Metals. Organic Letters, 2011, 13, 3534-3537.	4.6	44
182	When cyclopropenes meet gold catalysts. Beilstein Journal of Organic Chemistry, 2011, 7, 717-734.	2.2	113
183	Rhodiumâ€Catalyzed Cycloisomerization Involving Cyclopropenes: Efficient Stereoselective Synthesis of Mediumâ€Sized Heterocyclic Scaffolds. Angewandte Chemie - International Edition, 2011, 50, 5932-5937.	13.8	114
184	Synthesis of 1,2â€Amino Alcohols by Sigmatropic Rearrangements of 3â€(<i>N</i> a€Tosylamino)allylic Alcohol Derivatives. Chemistry - A European Journal, 2011, 17, 4480-4495.	3.3	31
185	Mechanism of Action of the Cytotoxic Macrolides Amphidinolide X and J. ChemBioChem, 2011, 12, 1027-1030.	2.6	14
186	FeCl3 \hat{A} -6H2O-catalyzed synthesis of substituted cis-2,6-tetrahydropyrans from \hat{I} q -hydroxy allylic derivatives. Tetrahedron, 2011, 67, 5024-5033.	1.9	31
187	A concise approach towards the synthesis of WS75624 A and WS75624 B via the cross-metathesis of vinyl-functionalized thiazoles. Tetrahedron Letters, 2011, 52, 2246-2249.	1.4	16
188	N-Formylsaccharin: A New Formylating Agent. Synlett, 2011, 2011, 1920-1922.	1.8	18
189	Reduction of Alkynyl αâ€Hydroxy Esters: Stereoselective αâ€Ketol Rearrangement. European Journal of Organic Chemistry, 2010, 2010, 607-610.	2.4	5
190	A convergent approach toward phoslactomycins and leustroducsins. Tetrahedron, 2010, 66, 6358-6375.	1.9	30
191	Efficient cyclization routes to substituted heterocyclic compounds mediated by transition-metal catalysts. Pure and Applied Chemistry, 2010, 82, 1365-1373.	1.9	20
192	Stereoselective Synthesis of the C1â^'C11 and C12â^'C34 Fragments of Mycalolide A. Organic Letters, 2010, 12, 3348-3351.	4.6	26
193	Enantioselective Synthesis of SSR 241586 by Using an Organo-Catalyzed Henry Reaction. Organic Letters, 2010, 12, 3693-3695.	4.6	31
194	Enantioselective Synthesis of \hat{l}^2 -Fluoroamines from \hat{l}^2 -Amino Alcohols: Application to the Synthesis of LY503430. Organic Letters, 2010, 12, 4620-4623.	4.6	33
195	Synthetic Efforts toward the Spiroketal Core of Spirangien A. Journal of Organic Chemistry, 2010, 75, 5151-5163.	3.2	34
196	Ring-Rearrangement Metathesis of Cyclopropenes: Synthesis of Heterocycles. Organic Letters, 2010, 12, 248-251.	4.6	44
197	FeCl ₃ -Catalyzed Highly Diastereoselective Synthesis of Substituted Piperidines and Tetrahydropyrans. Organic Letters, 2010, 12, 1808-1811.	4.6	120
198	Expedient Synthesis of a Stereoisomer of Acremolide B. Journal of Organic Chemistry, 2010, 75, 8478-8486.	3.2	12

#	Article	IF	CITATIONS
199	Rearrangement of \hat{I}^2 -amino alcohols via aziridiniums: a review. Chemical Society Reviews, 2010, 39, 89-102.	38.1	107
200	Synthesis of 3-Oxa- and 3-Azabicyclo [4.1.0] heptanes by Gold-Catalyzed Cycloisomerization of Cyclopropenes. Organic Letters, 2010, 12, 4144-4147.	4.6	88
201	Two Concise Total Syntheses of (â^')-Bitungolide F. Organic Letters, 2010, 12, 4074-4077.	4.6	27
202	Silica gel-mediated rearrangement of allylic acetates. Application to the synthesis of $1,3$ -enynes. Chemical Communications, $2010,46,4178.$	4.1	32
203	Convergent Synthesis of the C18-C30 Fragment of Amphidinol 3. Synlett, 2009, 2009, 2706-2710.	1.8	16
204	Asymmetric Pentenylation of Aldehydes: A New Benchmark for the Preparation of Ethyl-Substituted Homoallylic Alcohol. Synlett, 2009, 2009, 213-216.	1.8	5
205	Enantioselective Ring Expansion of Prolinols: An Efficient and Short Synthesis of 2-Phenylpiperidin-3-ol Derivatives and 3-Hydroxypipecolic Acids. Synlett, 2009, 2009, 2157-2161.	1.8	11
206	Simple Synthesis of Conjugated All-(E)-Polyenic Aldehydes, Ketones, and Esters Using Chemoselective Cross-Metathesis and an Iterative Sequence of Reactions: Application to the Synthesis of Navenone B. Synlett, 2009, 2009, 803-807.	1.8	16
207	One-Pot Hydrosilylation-RCM-Protodesilylation: Application to the Synthesis of ï‰-Alkenyl î±,î²-Unsaturated Lactones. Synlett, 2009, 2009, 565-568.	1.8	3
208	Rearrangement of $\hat{1}^2\hat{a}$ mino alcohols and application to the synthesis of biologically active compounds. Chirality, 2009, 21, 850-856.	2.6	38
209	Highly Enantioselective Synthesis of Linear βâ€Amino Alcohols. Chemistry - A European Journal, 2009, 15, 1064-1070.	3.3	15
210	Synthesis of Two Bioactive Natural Products: FR252921 and Pseudotrienic Acid B. Chemistry - A European Journal, 2009, 15, 3457-3473.	3.3	34
211	Gold-catalyzed cycloisomerizations of ene-ynamides. Tetrahedron, 2009, 65, 1809-1832.	1.9	82
212	Rearrangement of N-alkyl 1,2-amino alcohols. Synthesis of (S)-toliprolol and (S)-propanolol. Tetrahedron, 2009, 65, 6696-6706.	1.9	14
213	FeCl3-catalyzed Ritter reaction. Synthesis of amides. Tetrahedron Letters, 2009, 50, 3470-3473.	1.4	93
214	Acryloyl Chloride: An Excellent Substrate for Cross-Metathesis. A One-Pot Sequence for the Synthesis of Substituted \hat{l}_{\pm}, \hat{l}^2 -Unsaturated Carbonyl Derivatives. Organic Letters, 2009, 11, 5446-5448.	4.6	29
215	Straightforward Synthesis of the Near-Infrared Fluorescent Voltage-Sensitive Dye RH1691 and Analogues Thereof. Organic Letters, 2009, 11, 4822-4825.	4.6	19
216	A Convergent Approach toward the C1â°C11 Subunit of Phoslactomycins and Formal Synthesis of Phoslactomycin B. Organic Letters, 2009, 11, 935-938.	4.6	49

#	Article	IF	Citations
217	Synthesis of the Monomeric Counterpart of Marinomycin A. Journal of Organic Chemistry, 2009, 74, 7665-7674.	3.2	32
218	Diastereodivergent Addition of Allenylzincs to Aryl Glyoxylates. Organic Letters, 2009, 11, 2397-2400.	4.6	36
219	A Versatile Route to the Tulearin Class of Macrolactones: Synthesis of a Stereoisomer of Tulearin A. Organic Letters, 2009, 11, 3282-3285.	4.6	29
220	Enantioselective Organocatalytic Conjugate Reduction of \hat{l}^2 -Azole-Containing \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Aldehydes. Organic Letters, 2009, 11, 2756-2759.	4.6	41
221	Iron Trichloride-Promoted Cyclization of <i>></i> -Alkynylaryl Isocyanates: Synthesis of 3-(Chloromethylene)oxindoles. Organic Letters, 2009, 11, 4262-4265.	4.6	65
222	<i>Daucus carota</i> Mediated-Reduction of Cyclic 3-Oxo-amines. Organic Letters, 2009, 11, 1245-1248.	4.6	40
223	Total Synthesis of Cystothiazole A by Microwaveâ€Assisted Olefin Crossâ€Metathesis. European Journal of Organic Chemistry, 2008, 2008, 2701-2704.	2.4	29
224	Asymmetric Total Synthesis of the Immunosuppressant (â^')â€Pironetin. Angewandte Chemie - International Edition, 2008, 47, 10137-10140.	13.8	44
225	Migrastatin and analogues: New anti-metastatic agents. Comptes Rendus Chimie, 2008, 11, 1447-1462.	0.5	12
226	Neopeltolide, a new promising antitumoral agent. Comptes Rendus Chimie, 2008, 11, 1463-1476.	0.5	20
227	Exiguolide, a simplified analogue of the bryostatins by Nature?. Comptes Rendus Chimie, 2008, 11, 1477-1482.	0.5	18
228	Une source potentielle d'anticancéreux : Les produits naturels et leurs analogues. Extraction, caractérisation, activité biologique et synthèse. Comptes Rendus Chimie, 2008, 11, 1303-1305.	0.5	4
229	Synthetic efforts toward the synthesis of octalactins. Tetrahedron, 2008, 64, 5703-5710.	1.9	31
230	Synthetic studies toward cytostatin, a natural product inhibitor of protein phosphatase 2A. Tetrahedron, 2008, 64, 6684-6697.	1.9	18
231	Synthesis of optically enriched 1,2-aminoalcohols by [2,3]-Wittig rearrangements of 3-aza-allylic alcohol derivatives. Tetrahedron Letters, 2008, 49, 2902-2906.	1.4	24
232	Copper-Catalyzed Dielsâ^'Alder Reactions. Chemical Reviews, 2008, 108, 5359-5406.	47.7	379
233	Chapter 3 Total syntheses of zoapatanol. Strategies and Tactics in Organic Synthesis, 2008, , 59-98.	0.1	0
234	Synthesis of Vinyl-Functionalized Oxazoles by Olefin Cross-Metathesis. Journal of Organic Chemistry, 2008, 73, 2400-2403.	3.2	40

#	Article	IF	CITATIONS
235	Syntheses of (S,S)-Reboxetine via a Catalytic Stereospecific Rearrangement of \hat{I}^2 -Amino Alcohols. Journal of Organic Chemistry, 2008, 73, 707-710.	3.2	51
236	Synthetic Efforts toward the Macrolactone Core of Leucascandrolide A. Journal of Organic Chemistry, 2008, 73, 1864-1880.	3.2	61
237	Total Synthesis of Amphidinolide J. Organic Letters, 2008, 10, 4489-4492.	4.6	43
238	A Convergent Total Synthesis of (+)-Febrifugine. Synlett, 2008, 2008, 1216-1218.	1.8	3
239	Synthesis of \hat{I}^3 -Alkylidene $\hat{I}\pm,\hat{I}^2$ -Unsaturated \hat{I} -Lactones by Ring-Closing Metathesis: Application to the Synthesis of the C1-C8 Subunit of Biselide E. Synlett, 2008, 2008, 2583-2586.	1.8	4
240	Facile Synthesis of the C1-C13 Fragment of Lyngbouilloside. Synlett, 2008, 2008, 712-714.	1.8	2
241	[1,2]-Wittig Rearrangement of (Benzyloxy)acetamides. Synlett, 2008, 2008, 2345-2347.	1.8	2
242	Formal Synthesis of Leustroducsin B. Synlett, 2008, 2008, 2617-2620.	1.8	7
243	Total Synthesis of (+)-Dodoneine. Synlett, 2008, 2008, 2459-2460.	1.8	2
244	Chemoselective reactions: Toward the synthesis of biologically active natural products with anticancer activities. Pure and Applied Chemistry, 2008, 80, 1683-1691.	1.9	18
245	Chemoselective Epoxidation of Ene-Ynamides: Intramolecular Cyclopropanation Induced by the Intermediate $\hat{l}\pm$ -Oxocarbene. Synlett, 2007, 2007, 2819-2822.	1.8	2
246	Formal Synthesis of Cytostatin by a Convergent Approach. Synlett, 2007, 2007, 0934-0938.	1.8	4
247	Efficient Syntheses of the Polyene Fragments Present in Amphidinols. Synlett, 2007, 2007, 2286-2288.	1.8	22
248	Stereospecific Rearrangement of β-Amino Alcohols Catalyzed by H2SO4. Synlett, 2007, 2007, 2888-2890.	1.8	3
249	Highly Diastereoselective Addition of Phenyllithium on cis-Substituted C-Cyclopropylaldimines. Synlett, 2007, 2007, 0259-0262.	1.8	0
250	Synthesis of Optically Active Substituted 3-Fluoropiperidines from Prolinols by Using DAST. Synlett, 2007, 2007, 0263-0267.	1.8	11
251	Concise Total Synthesis of (-)-Muricatacin and (-)-iso-Cladospolide B Using Chemoselective Cross-Metathesis. Synlett, 2007, 2007, 2891-2893.	1.8	1
252	Synthetic Studies towards the Marine Natural Product Palmerolide A: Synthesis of the C3-C15 and C16-C23 Fragments. Synlett, 2007, 2007, 2983-2986.	1.8	1

#	Article	IF	CITATIONS
253	A Short and Highly Diastereoselective Synthesis of Verbalactone. Synlett, 2007, 2007, 0451-0452.	1.8	2
254	Synthesis of the C1-C13 Fragment of (+)-Callipeltoside A. Synlett, 2007, 2007, 1461-1463.	1.8	1
255	Stereoselective Synthesis of the C(53)-C(67) Polyene Fragment of Amphidinol 3. Synlett, 2007, 2007, 2351-2354.	1.8	20
256	Stereoselective Synthesis of 1,2-Aminoalcohols by $[2,3]$ -Wittig Rearrangements. Organic Letters, 2007, 9, 3245-3248.	4.6	44
257	Synthesis of a Promising Immunosuppressant:  FR252921. Organic Letters, 2007, 9, 4761-4764.	4.6	32
258	An Efficient and Stereoselective Synthesis of the Monomeric Counterpart of Marinomycin A. Organic Letters, 2007, 9, 1453-1456.	4.6	27
259	Formal Chemoselective Synthesis of Leucascandrolide A. Organic Letters, 2007, 9, 2461-2464.	4.6	65
260	Cross-Metathesis between α-Methylene-γ-butyrolactone and Olefins: A Dramatic Additive Effect. Organic Letters, 2007, 9, 1695-1698.	4.6	83
261	Total Synthesis of Herbimycin A. Organic Letters, 2007, 9, 145-148.	4.6	50
262	Ruthenium-Catalyzed Cross-Metathesis between Diallylsilanes and Electron-Deficient Olefins. Organic Letters, 2007, 9, 3765-3768.	4.6	15
263	A Concise Total Synthesis of Melithiazole C. Organic Letters, 2007, 9, 3425-3427.	4.6	33
264	Highly Enantioselective Synthesis of β-Amino Alcohols:  A Catalytic Version. Journal of Organic Chemistry, 2007, 72, 6556-6561.	3.2	44
265	Synthesis of an analog of mycothiazole and total synthesis of pseudotrienic acid B. Pure and Applied Chemistry, 2007, 79, 677-684.	1.9	9
266	Ironâ€Catalyzed Crossâ€Coupling of Alkyl Halides with Alkenyl Grignard Reagents. Angewandte Chemie - International Edition, 2007, 46, 6521-6524.	13.8	216
267	Synthesis of Vinyl-Functionalized Thiazoles by Cross-Metathesis and Tandem Stille Coupling/Cross-Metathesis. Advanced Synthesis and Catalysis, 2007, 349, 152-156.	4.3	28
268	Ring Expansion Induced by DAST: Synthesis of Substituted 3â€Fluoropiperidines from Prolinols and 3â€Fluoroazepanes from 2â€Hydroxymethylpiperidines. European Journal of Organic Chemistry, 2007, 2007, 4224-4234.	2.4	45
269	Synthesis of migrastatin and its macrolide core. Tetrahedron, 2007, 63, 5918-5929.	1.9	32
270	Synthesis of 3-oxooxa- and 3-oxoazacycloalk-4-enes by ring-closing metathesis. Application to the synthesis of an inhibitor of cathepsin K. Tetrahedron, 2007, 63, 4472-4490.	1.9	41

#	Article	IF	CITATIONS
271	Enantioselective ring expansion of prolinol derivatives. Two formal syntheses of (â^')-swainsonine. Tetrahedron, 2007, 63, 9082-9091.	1.9	48
272	Synthesis of 3-Oxoazacyclohept-4-enes by Ring-closing Metathesis. Application to the Synthesis of an Inhibitor of Ca- thepsin K. Heterocycles, 2006, 67, 549.	0.7	7
273	Highly Enantioselective Synthesis of β-Amino Alcohols. Organic Letters, 2006, 8, 3509-3512.	4.6	29
274	Concise synthesis of the $(\hat{A}\pm)$ -Nb-desmethyl-meso-chimonanthine. Chemical Communications, 2006, , 4638-4640.	4.1	50
275	Free-Radical Approaches to Stemoamide and Analogues. Journal of Organic Chemistry, 2006, 71, 9528-9531.	3.2	32
276	Ring Expansion of Functionalized Octahydroindoles to Enantiopurecis-Decahydroquinolinesâ€. Journal of Organic Chemistry, 2006, 71, 5930-5935.	3.2	24
277	Enantio- and Diastereoselective Allylmetalations:  An Easy and Efficient Access to the AB Spiroketal of Spongistatin. Organic Letters, 2006, 8, 3655-3657.	4.6	25
278	Total Synthesis of (â^')-Spongidepsin. Organic Letters, 2006, 8, 3441-3443.	4.6	50
279	Rearrangement of Homoallylic Alcohols Induced by DAST. Organic Letters, 2006, 8, 2091-2094.	4.6	9
280	Biological evaluation of newly synthesized quinoline-5,8-quinones as Cdc25B inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 6283-6287.	3.0	21
281	Chemoselective cross-metathesis reaction between electron-deficient 1,3-dienes and olefins. Journal of Organometallic Chemistry, 2006, 691, 5456-5465.	1.8	47
282	Enantioselective diethylzinc addition to aromatic and aliphatic aldehydes using (3R,5R)-dihydroxypiperidine derivatives catalyst. Tetrahedron, 2006, 62, 2388-2394.	1.9	53
283	Synthesis of 3-(arylmethylene)isoindolin-1-ones from ynamides by Heck–Suzuki–Miyaura domino reactions. Application to the synthesis of lennoxamine. Tetrahedron, 2006, 62, 3882-3895.	1.9	112
284	Generation of ketyl radical anions by photoinduced electron transfer (PET) between ketones and amines. Synthetic applications. Tetrahedron, 2006, 62, 6459-6470.	1.9	72
285	Reactivity of unsaturated sultones synthesized from unsaturated alcohols by ring-closing metathesis. Application to the racemic synthesis of the originally proposed structure of mycothiazole. Tetrahedron, 2006, 62, 9017-9037.	1.9	46
286	A short synthesis of lennoxamine via ynamides. Tetrahedron Letters, 2006, 47, 767-769.	1.4	46
287	Two approaches for efficient synthesis of (a^')-colletol. Tetrahedron Letters, 2006, 47, 901-904.	1.4	20
288	Regioselective Synthesis of 1,2- and 1,3-Diols from ω-Hydroxy Allyl Acetates and Carbonates via Pd Complexes Using Boric Acid and Trialkyl Borates ChemInform, 2006, 37, no.	0.0	0

#	Article	IF	CITATIONS
289	A One-Pot Process for the Enantioselective Preparation of Saturated Secondary Alcohols from Propargyl Ketones under Hydrogen Transfer Conditions ChemInform, 2006, 37, no.	0.0	0
290	Total Synthesis of Pseudotrienic Acid B: A Bioactive Metabolite fromPseudomonas sp. MF 381-IODS. Angewandte Chemie - International Edition, 2006, 45, 5870-5874.	13.8	18
291	Diastereoselective Gold-Catalyzed Cycloisomerizations of Ene-Ynamides. Angewandte Chemie - International Edition, 2006, 45, 6726-6730.	13.8	161
292	Total Synthesis of (+)-Migrastatin. European Journal of Organic Chemistry, 2006, 2006, 4800-4804.	2.4	26
293	Desymmetrization of Substituted 1,3-Diketones: A Formal Synthesis of (+)-Stemoamide. Synlett, 2006, 2006, 2664-2666.	1.8	7
294	A Short and Efficient Synthesis of (-)-Diospongin A. Synlett, 2006, 2006, 3455-3456.	1.8	4
295	Total synthesis of zincophorin. Pure and Applied Chemistry, 2005, 77, 1131-1137.	1.9	10
296	Regioselective synthesis of 1,2- and 1,3-diols from \ddot{l} %-hydroxy allyl acetates and carbonates via Pd complexes using boric acid and trialkyl borates. Tetrahedron Letters, 2005, 46, 6945-6948.	1.4	20
297	A one-pot process for the enantioselective preparation of saturated secondary alcohols from propargyl ketones under hydrogen transfer conditions. Tetrahedron Letters, 2005, 46, 6915-6918.	1.4	20
298	Synthesis of polypropionate subunits from cyclopropanes. Tetrahedron, 2005, 61, 7632-7653.	1.9	13
299	Regioselective Cross-Metathesis Reaction Induced by Steric Hindrance ChemInform, 2005, 36, no.	0.0	0
300	Palladium-Catalyzed ?-Arylation of N-Protected 2-Piperidinones ChemInform, 2005, 36, no.	0.0	0
301	Synthetic Routes to Discodermolide and Pironetin: Two Immunosuppressive and Antitumoral Agents. ChemInform, 2005, 36, no.	0.0	0
302	Hydrogenation versus Hydrogenolysis with a Safe, Selective and Reusable Catalyst: Palladium Black on Teflon ChemInform, 2005, 36, no.	0.0	0
303	Total Synthesis of Zincophorin and Its Methyl Ester. ChemInform, 2005, 36, no.	0.0	0
304	Selective Methodologies for the Synthesis of Biologically Active Piperidinic Compounds. ChemInform, 2005, 36, no.	0.0	0
305	Selective methodologies for the synthesis of biologically active piperidinic compounds. Chemical Record, 2005, 5, 70-80.	5.8	101
306	Metathesis Reactions. General Considerations. Current Topics in Medicinal Chemistry, 2005, 5, 1461-1472.	2.1	19

#	Article	IF	Citations
307	Editorial [Hot Topic: Metathesis Reactions in the Synthesis of Biologically Active Compounds and Medicinal Chemistry (Guest Editor: Janine Cossy)]. Current Topics in Medicinal Chemistry, 2005, 5, 1459-1459.	2.1	0
308	A Short and Enantioselective Synthesis of Colletodiol. Synlett, 2005, 2005, 1933-1935.	1.8	3
309	A Short and Efficient Stereoselective Synthesis of the Octalactin Lactone Using Enantioselective Crotyltitanations and a Cross-Metathesis Reaction. Synlett, 2005, 2005, 2851-2853.	1.8	4
310	Efficient Enantioselective Formal Synthesis of Ro 67-8867, a NMDA 2B Receptor Antagonist. Synlett, 2005, 2005, 1170-1172.	1.8	3
311	Reduction of Olefins Using Ruthenium Carbene Catalysts and Silanes. Synlett, 2005, 2005, 2449-2452.	1.8	9
312	A Radical Approach for the Construction of the Tricyclic Core of Stemoamide. Synlett, 2005, 2005, 349-351.	1.8	5
313	Palladium-Catalyzed Suzuki-Miyaura Coupling Reactions Involving \hat{l}^2 , \hat{l}^2 -Dihaloenamides: Application to the Synthesis of Disubstituted Ynamides. Synlett, 2005, 2005, 0905-0910.	1.8	5
314	Total Synthesis of $(\hat{A}\pm)$ -Mycothiazole and Formal Enantioselective Approach. Organic Letters, 2005, 7, 339-342.	4.6	44
315	Synthetic Routes to Discodermolide and Pironetin: Two Immunosuppressive and Antitumoral Agents. Studies in Natural Products Chemistry, 2005, , 3-54.	1.8	1
316	Hydrosilylation of Terminal Alkynes with Alkylidene Ruthenium Complexes and Silanes. Journal of Organic Chemistry, 2005, 70, 10717-10719.	3.2	75
317	A One-Pot Reformatsky/Cyclopropanation Sequence Induced by Diethylzinc. Organic Letters, 2005, 7, 171-173.	4.6	24
318	Synthetic Approaches and Total Synthesis of Natural Zoapatanol. Journal of Organic Chemistry, 2005, 70, 2097-2108.	3.2	49
319	Hydrogenation versus hydrogenolysis with a safe, selective and reusable catalyst: palladium black on TeflonÁ®. New Journal of Chemistry, 2005, 29, 761.	2.8	4
320	A Very Short and Efficient Synthesis of Preclamol. Letters in Organic Chemistry, 2005, 2, 136-138.	0.5	14
321	Stereoselective Synthesis of the C15-C24 Fragment of Discodermolide by Desymmetrization of a meso Dialdehyde. Synlett, 2004, 2004, 2034-2036.	1.8	9
322	Simple Preparation of 3-Aryl 2-Piperidinones. Synthesis, 2004, 2004, 2930-2933.	2.3	2
323	Palladium-catalyzed α-arylation of N-protected 2-piperidinones. Tetrahedron, 2004, 60, 9757-9767.	1.9	34
324	Stereoselective Synthesis of Polypropionate Units and Heterocyclic Compounds by Cyclopropylcarbinol Ring-Opening with Mercury(II) Salts. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
325	Synthesis of Unsaturated [1,2]Oxazines by Using Sigmatropic Rearrangements and the Ring-Closing Metathesis Reaction ChemInform, 2004, 35, no.	0.0	0
326	Stereo- and Enantioselective Reactions. Application to the Synthesis of Biologically Active Compounds. ChemInform, 2004, 35, no.	0.0	0
327	Synthesis of ω-Hydroxy Ketones from ω-Benzyloxy Weinreb Amides by Using a Chemoselective Nucleophilic Addition/Birch Reduction Process ChemInform, 2004, 35, no.	0.0	0
328	Heck—-Suzuki—Miyaura Domino Reactions Involving Ynamides. An Efficient Access to 3-(Arylmethylene)isoindolinones ChemInform, 2004, 35, no.	0.0	0
329	Modular ligands in asymmetric synthesis. Copper-mediated cyclopropanation. Tetrahedron Letters, 2004, 45, 1781-1783.	1.4	17
330	Natural (5′-oxoheptene-1′E,3′E-dienyl)-5,6-dihydro-2H-pyran-2-one: total synthesis and revision of its absolute configuration. Tetrahedron Letters, 2004, 45, 2615-2617.	1.4	16
331	Two successive one-pot reactions leading to the expeditious synthesis of (â^')-centrolobine. Tetrahedron Letters, 2004, 45, 6603-6605.	1.4	61
332	Tetrafibricin:  Synthesis of the C1ⰒC13, C15ⰒC25, and C27ⰒC40 Fragments. Organic Letters, 2004, 6, 3469-3472.	4.6	35
333	Total Synthesis of Natural (+)-(2â€~S,3â€~R)-Zoapatanol. Organic Letters, 2004, 6, 2149-2151.	4.6	23
334	Heckâ^'Suzukiâ^'Miyaura Domino Reactions Involving Ynamides. An Efficient Access to 3-(Arylmethylene)isoindolinones. Organic Letters, 2004, 6, 2511-2514.	4.6	158
335	Synthesis of ω-Hydroxy Ketones from ω-Benzyloxy Weinreb Amides by Using a Chemoselective Nucleophilic Addition/Birch Reduction Process. Organic Letters, 2004, 6, 2145-2147.	4.6	42
336	Regioselective Cross-Metathesis Reaction Induced by Steric Hindrance. Organic Letters, 2004, 6, 3465-3467.	4.6	73
337	Total Synthesis of Zincophorin and Its Methyl Ester. Journal of Organic Chemistry, 2004, 69, 4626-4647.	3.2	58
338	Chapter 10 Total synthesis of zincophorin and its methyl ester. Strategies and Tactics in Organic Synthesis, 2004, , 303-352.	0.1	1
339	Stereoselective Synthesis of Polypropionate Units and Heterocyclic Compounds by Cyclopropylcarbinol Ring-Opening with Mercury(II) Salts. Accounts of Chemical Research, 2003, 36, 766-772.	15.6	47
340	Free-Radical Hydroxylation Reactions of Alkylboronates ChemInform, 2003, 34, no.	0.0	0
341	Tandem Cross-Metathesis/Hydrogenation/Cyclization Reactions by Using Compatible Catalysts ChemInform, 2003, 34, no.	0.0	0
342	Degradation of Aldehydes to One Carbon Lower Homologues ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	Citations
343	Palladium-Catalyzed Intermolecular α-Arylation of N-Protected 2-Piperidinones ChemInform, 2003, 34, no.	0.0	0
344	Solid phase synthesis of amides by the Beckmann rearrangement of ketoxime carbonates. Tetrahedron Letters, 2003, 44, 8581-8584.	1.4	17
345	Synthesis of unsaturated [1,2]oxazines by using sigmatropic rearrangements and the ring-closing metathesis reaction. Tetrahedron Letters, 2003, 44, 8577-8580.	1.4	23
346	Enantioselective monoreduction of 2-alkyl 1,3-diketones using chiral ruthenium catalysts. Synthesis of the C14î—,C25 fragment of bafilomycin A1. Tetrahedron Letters, 2003, 44, 8823-8826.	1.4	19
347	Degradation of aldehydes to one carbon lower homologs. Tetrahedron Letters, 2003, 44, 3613-3615.	1.4	8
348	Enantioselective allyltitanations: synthesis of the proposed structures for passifloricin A. Tetrahedron Letters, 2003, 44, 4471-4473.	1.4	26
349	Stereo- and enantioselective reactions. Application to the synthesis of biologically active compounds. Comptes Rendus Chimie, 2003, 6, 547-552.	0.5	9
350	Stereoselective Synthesis of the C1â^'C13 Fragment of (+)-Discodermolide Using Asymmetric Allyltitanations. Organic Letters, 2003, 5, 3029-3031.	4.6	30
351	Total Synthesis of (+)-Strictifolione. Organic Letters, 2003, 5, 1995-1997.	4.6	49
352	Synthesis of the C14â^'C25 Subunit of Bafilomycin A1. Journal of Organic Chemistry, 2003, 68, 9994-10002.	3.2	30
353	Total Synthesis of Zincophorin Methyl Ester. Organic Letters, 2003, 5, 4037-4040.	4.6	36
354	Palladium-Catalyzed Intermolecular α-Arylation of N-Protected 2-Piperidinones. Organic Letters, 2003, 5, 3037-3039.	4.6	68
355	Tandem Cross-Metathesis/Hydrogenation/Cyclization Reactions by Using Compatible Catalysts. Organic Letters, 2003, 5, 459-462.	4.6	96
356	Diastereoselective conjugate addition of organocuprates to chiral racemic olefinic amido esters. Formal total synthesis of paroxetine. New Journal of Chemistry, 2003, 27, 475-482.	2.8	14
357	Base Effect on the Palladium Catalyzed α-Arylation of N-Benzyl-2-Piperidinones. Synlett, 2003, 2003, 2171-2174.	1.8	26
358	Chiral Titanium Complexes. Synthesis of Optically Active Unsaturated Alcohols, Diols, Polypropionates and their Use in the Synthesis of Biologically Active Compounds. Synlett, 2002, 2002, 1595-1606.	1.8	33
359	Enantioselective Allyltitanation. Synthesis of (-)-Slaframine. Synthesis, 2002, 2002, 951-957.	2.3	41
360	Enantioselective Monoreduction of 2-Alkyl-1,3-diketones Mediated by Chiral Ruthenium Catalysts. Dynamic Kinetic Resolution. Organic Letters, 2002, 4, 1263-1265.	4.6	62

#	Article	IF	Citations
361	Free-Radical Hydroxylation Reactions of Alkylboronates. Journal of Organic Chemistry, 2002, 67, 7193-7202.	3.2	65
362	Enantioselective Allyltitanations and Metathesis Reactions. Application to the Synthesis of Piperidine Alkaloids (+)-Sedamine and (â°')-Prosophylline. Journal of Organic Chemistry, 2002, 67, 1982-1992.	3.2	93
363	Aromatization of Enamines Promoted by a Catalytic Amount of Pd/C. Synthesis of Aromatic Amines. Organic Letters, 2002, 4, 2557-2559.	4.6	46
364	Selective protection of spirocyclic diols. An unusual acetal opening by DIBAL-H. New Journal of Chemistry, 2002, 26, 526-529.	2.8	8
365	Modular Ligands for Asymmetric Synthesis: Enantioselective Catalytic Cull-Mediated Condensation Reaction of Ethyl Pyruvate with Danishefsky's Diene. Angewandte Chemie - International Edition, 2002, 41, 625-628.	13.8	32
366	A Synthetic Approach towards the C1–C9 Subunit of Zincophorin. Angewandte Chemie - International Edition, 2002, 41, 2144.	13.8	26
367	A Formal Synthesis of (â^)-Paroxetine by Enantioselective Ring Enlargement of a Trisubstituted Prolinol. European Journal of Organic Chemistry, 2002, 2002, 3543-3551.	2.4	33
368	Cross-Metathesis Reaction: Direct Synthesis of Functionalized Allylsilanes. Advanced Synthesis and Catalysis, 2002, 344, 627.	4.3	22
369	Formal total synthesis of (+)-methynolide. Tetrahedron, 2002, 58, 5909-5922.	1.9	44
370	Selective cyclopropylcarbinyl rearrangement of tricyclo [5.3.1.0] undecanols induced by pyridinium chlorochromate. Tetrahedron Letters, 2002, 43, 823-827.	1.4	18
371	Stereoselective oxymercuration of cyclopropylcarbinols with anchimeric assistance by aromatic groups. Tetrahedron Letters, 2002, 43, 1801-1805.	1.4	9
372	Olefin isomerization by a ruthenium carbenoid complex. Cleavage of allyl and homoallyl groups. Tetrahedron Letters, 2002, 43, 1839-1841.	1.4	121
373	Tandem reaction by using compatible catalysts: cross-metathesis reaction and hydrogenation. Tetrahedron Letters, 2002, 43, 6715-6717.	1.4	33
374	Regioselective ring opening of epoxides by nucleophiles mediated by lithium bistrifluoromethanesulfonimide. Tetrahedron Letters, 2002, 43, 7083-7086.	1.4	85
375	Synthesis of 3-oxo oxacycloalkenes by ring closing metathesis. Tetrahedron Letters, 2002, 43, 7263-7266.	1.4	24
376	A new nitrone from C2 symmetric piperidine for the synthesis of hydroxylated indolizidinone. Tetrahedron Letters, 2002, 43, 9357-9359.	1.4	31
377	Enantioselective Monoreduction of 2â€Alkylâ€1,3â€diketones Mediated by Chiral Ruthenium Catalysts. Dynamic Kinetic Resolution ChemInform, 2002, 33, 31-31.	0.0	0
378	Chemoselective Cross-Metathesis Reaction. Application to the Synthesis of the Clâ^'Cl4 Fragment of Amphidinol 3. Organic Letters, 2001, 3, 1451-1454.	4.6	108

#	Article	IF	CITATIONS
379	Reactivity of α-(Benzoyloxy)crotylstannane with Aldehydes in Liquid Phase and on Solid Support. Synthesis of Substituted Lactones. Journal of Organic Chemistry, 2001, 66, 7195-7198.	3.2	25
380	Synthesis of Stereotriads by Oxymercuration of Substituted Cyclopropylcarbinols. Organic Letters, 2001, 3, 2567-2569.	4.6	21
381	Synthesis of the C1â°'C12 Fragment of Fostriecin. Organic Letters, 2001, 3, 2233-2235.	4.6	55
382	A short formal synthesis of paroxetine. Diastereoselective cuprate addition to a chiral racemic olefinic amido ester. Tetrahedron Letters, 2001, 42, 7805-7807.	1.4	23
383	Formation of radicals by irradiation of alkyl halides in the presence of triethylamine. Application to the synthesis of $(\hat{A}\pm)$ -bisabolangelone. Tetrahedron, 2001, 57, 5173-5182.	1.9	27
384	Cross-metathesis reaction. Generation of highly functionalized olefins from unsaturated alcohols. Journal of Organometallic Chemistry, 2001, 634, 216-221.	1.8	38
385	The iodocyclization of unsaturated dihydroxysulfonamide derivatives. N- versus O-cyclization. Tetrahedron Letters, 2001, 42, 251-254.	1.4	6
386	Hydroxylation of olefins using molecular oxygen via alkylboronic esters. Tetrahedron Letters, 2001, 42, 1661-1663.	1.4	16
387	Direct diastereoselective synthesis of $(\hat{A}\pm)$ -cis- and $(\hat{A}\pm)$ -trans-4-methylpipecolic acid and derivatives. Tetrahedron Letters, 2001, 42, 2119-2120.	1.4	10
388	Efficient synthesis of substituted quinoline-5,8-quinones from 8-hydroxyquinolines by photooxygenation. Tetrahedron Letters, 2001, 42, 4329-4331.	1.4	18
389	Ruthenium-catalyzed asymmetric reduction of 1,3-diketones using transfer hydrogenation. Tetrahedron Letters, 2001, 42, 5005-5007.	1.4	76
390	[2,3]-Wittig rearrangement of \hat{I}^3 -allyloxy- \hat{I}^2 -ketoesters. A new access to tetronic acids. Tetrahedron Letters, 2001, 42, 5215-5218.	1.4	21
391	Ring expansion: formal total synthesis of (â^²)-paroxetine. Tetrahedron Letters, 2001, 42, 5705-5707.	1.4	32
392	A short synthesis of cisapride: a gastrointestinal stimulant derived from cis-4-amino-3-methoxypiperidine. Tetrahedron Letters, 2001, 42, 5713-5715.	1.4	15
393	A short synthesis of argatroban. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1989-1992.	2.2	22
394	Formal total synthesis of $(\hat{A}\pm)$ -bisabolangelone by using a radical cyclization. Comptes Rendus De L'Academie Des Sciences - Series Ilc: Chemistry, 2001, 4, 427-429.	0.1	0
395	Synthesis of Isopropenylcyclopropanes \hat{a}^{γ} Revision of the Relative Configuration of Cyclopropyl Ketones Obtained by 1,3-Elimination of \hat{I}^{3} -Epoxy Ketones. European Journal of Organic Chemistry, 2001, 2001, 339-348.	2.4	17
396	Total Synthesis of (â^')-4a,5-Dihydrostreptazolin. European Journal of Organic Chemistry, 2001, 2001, 2841.	2.4	23

#	Article	IF	Citations
397	Cross-metathesis reaction. Generation of highly functionalized olefins from unsaturated alcohols. Journal of Organometallic Chemistry, 2001, 624, 327-332.	1.8	64
398	Solid-Support Synthesis of 1,2-Diols and \hat{I}^3 -Lactones Through Addition of \hat{I} ±-(Benzoyloxy)crotylindium Reagents to Aldehydes. Synlett, 2001, 2001, 0629-0633.	1.8	11
399	Ring Expansion: Synthesis of the Velbanamine Piperidine Core. Synlett, 2001, 2001, 1575-1577.	1.8	28
400	Enantioselective Allyltitanation and Cross-Metathesis. Synthesis of (-)-Prosophylline. Synlett, 2001, 2001, 1578-1580.	1.8	19
401	The N-(2-acetoxyethyl) group as a new photolabile protecting group. Tetrahedron Letters, 2000, 41, 2097-2099.	1.4	18
402	Enantioselective synthesis of propargylic alcohols by addition of enantiopure cyclopentadienyldialkoxyallyltitanium complexes to acetylenic aldehydes. Tetrahedron Letters, 2000, 41, 8877-8880.	1.4	18
403	Enantioselective allyltitanation. Application to the synthesis of lactone units related to compactin and mevinolin. Tetrahedron Letters, 2000, 41, 3363-3366.	1.4	22
404	Lewis acid-mediated nucleophilic reaction of 2-alkoxychromanes with silyl enol ethers. Tetrahedron Letters, 2000, 41, 7203-7205.	1.4	12
405	Radical carbon–carbon coupling reactions via organoboranes. Chemical Communications, 2000, , 1017-1018.	4.1	28
406	Metallic Salt Promoted Radical Cyclization of \hat{l}^2 -Keto Carboxamides and Their Corresponding \hat{l}^2 -Enamino Carboxamides. Journal of Organic Chemistry, 2000, 65, 7257-7265.	3.2	45
407	Enantioselective Synthesis of syn- and anti-1,3-Diols via Allyltitanation of Unprotected β-Hydroxyaldehydes. Organic Letters, 2000, 2, 501-504.	4.6	46
408	Enantioselective Allyltitanation. Efficient Synthesis of the C1â°'C14 Polyol Subunit of Amphotericin B. Organic Letters, 2000, 2, 3975-3977.	4.6	18
409	Desymmetrization ofmeso-Dialdehydes with Optically Active Cyclopentadienyldialkoxyallyltitanium Complexes. Organic Letters, 2000, 2, 3449-3451.	4.6	13
410	Stereoselective Synthesis of Cyclopropanes Bearing Adjacent Stereocenters. Synthesis, 1999, 1999, 1063-1075.	2.3	21
411	Oxidation of substituted spiro[bicyclo[n.1.0]alkane-2,2′-[1,3]dioxolanes]. Formation of substituted lactones. Tetrahedron Letters, 1999, 40, 4681-4682.	1.4	6
412	Diastereoselectivity in the dihydroxylation of isopropenyl substituted three-membered rings. Tetrahedron Letters, 1999, 40, 8361-8364.	1.4	15
413	A short synthesis of cordiachromene. Tetrahedron Letters, 1999, 40, 8113-8114.	1.4	23
414	Synthetic studies towards ML-3000 a concise synthesis of this non-steroidal anti-inflammatory drug. Tetrahedron, 1999, 55, 5145-5156.	1.9	16

#	Article	IF	Citations
415	Approaches to a synthesis of α-kainic acid. Tetrahedron, 1999, 55, 6153-6166.	1.9	29
416	Manganese(III) acetate and copper(II) acetate promoted oxidation of \hat{l}^2 -enaminoamides and \hat{l}^2 -enaminoesters. Tetrahedron, 1999, 55, 6483-6496.	1.9	20
417	Enantioselective allyltitanations. Synthesis of optically active 1,2-diol units: useful intermediates for the preparation of biologically active compounds. Tetrahedron: Asymmetry, 1999, 10, 3859-3862.	1.8	6
418	Michael radical additions Two short efficient syntheses of (+)-conocephalenol from (R)-pulegone. Tetrahedron, 1999, 55, 11289-11294.	1.9	11
419	Derivatives of 7-oxabicyclo[2.2.1]heptane in nature and as useful synthetic intermediates. Tetrahedron, 1999, 55, 13521-13642.	1.9	179
420	Radical cyclizations. A convergent total synthesis of (\hat{A}_{\pm}) - \hat{I}^3 -lycorane. Tetrahedron Letters, 1999, 40, 1125-1128.	1.4	31
421	Ring Expansion – Formation of Optically Active 3-Hydroxypiperidines from Pyrrolidinemethanol Derivatives. European Journal of Organic Chemistry, 1999, 1999, 1693-1699.	2.4	69
422	Radical Cyclizations – Synthesis of γ-Lycorane. European Journal of Organic Chemistry, 1999, 1999, 1925-1933.	2.4	44
423	Migratory insertion reactions of norbornene, norbornadiene and 7-oxanorbornene derivatives into the palladium–carbon bond of heterodinuclear Fe–Pd–Acyl complexes. Substrate influence on the Pd coordination sphere and crystal structure of [(OC)3Feî€{Î⅓-Si(OMe)2(OMe)}{(Î⅓-dppa)Pdî€{C9H9NO. New Journal of Chemistry. 1999. 23. 1215-1222.	3C(î €† &)	Me ²⁵ .
424	Diastereoselective Hydroboration of Isopropenylcyclopropanes. Journal of Organic Chemistry, 1999, 64, 2608-2609.	3.2	21
425	Ring Expansion – Formation of Optically Active 3-Hydroxypiperidines from Pyrrolidinemethanol Derivatives. , 1999, 1999, 1693.		2
426	A convenient route to spiropyrrolidinyl-oxindole alkaloids via C-3 substituted ene-pyrrolidine carbamate radical cyclization. Tetrahedron Letters, 1998, 39, 2331-2332.	1.4	27
427	Synthesis of spiro[quinoline-2,4′-piperidines] Heck versus radical reaction. Tetrahedron Letters, 1998, 39, 2965-2968.	1.4	20
428	Specific oxidative cleavage of allylic and benzylic ethers by using pyridinium chlorochromate. Tetrahedron Letters, 1998, 39, 2561-2564.	1.4	12
429	Synthesis of spirocyclic bislactones substituent effects on the regioselectivity of the Baeyer-Villiger of 1,3-diketones. Tetrahedron Letters, 1998, 39, 4459-4462.	1.4	10
430	A one-pot synthesis of functionalized 2,2-disubstituted 2H-1-benzopyrans. Tetrahedron Letters, 1998, 39, 9671-9674.	1.4	9
431	Facile Synthesis of Spirocyclic Systems through the Intramolecular Addition of Ketyl Radicals via the Sodium/Ammonia Reduction of δ,ε-Unsaturated Carboxylic Esters. Journal of Organic Chemistry, 1998, 63, 3141-3146.	3.2	24
432	Directing Effect of a Neighboring Aromatic Group in the Cyclopropanation of Allylic Alcohols. Journal of Organic Chemistry, 1998, 63, 5728-5729.	3.2	12

#	Article	IF	CITATIONS
433	A Formal Synthesis of (-)-α-Kainic Acid. Synlett, 1998, 1998, 507-509.	1.8	20
434	Synthesis of (-)-Pseudoconhydrine through Ring Enlargement of a L-Proline Derivative. Synlett, 1997, 1997, 905-906.	1.8	44
435	Intramolecular Ene Reactions. Stereo- and Enantioselective Synthesis of Spirolactams through Thermolysis of Enamino Carboxamides. Journal of Organic Chemistry, 1997, 62, 7106-7113.	3.2	18
436	Synthesis of ML-3000, an Inhibitor of Cyclooxygenase and 5-Lipoxygenase. Journal of Organic Chemistry, 1997, 62, 7900-7901.	3.2	27
437	Thermolysis of N-unsaturated alkyl-β-ketoamides. An easy access to spirolactams. Tetrahedron, 1997, 53, 5775-5784.	1.9	13
438	A SHORT AND EFFICIENT SYNTHESIS OF ZAMIFENACIN A MUSCARINIC M3 RECEPTOR ANTAGONIST. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1343-1344.	2.2	26
439	Photoselective bond cleavage of tricyclo [5.3.1.01,7] undecane derivatives. A facile entry to carbocyclic taxane [A,B] ring system. Tetrahedron Letters, 1997, 38, 1931-1932.	1.4	10
440	2-Methylcyclopentane-1,3-dione: An efficient synthon for the synthesis of $(\hat{A}\pm)-\hat{l}\pm$ -cuparenone. Tetrahedron Letters, 1997, 38, 4069-4070.	1.4	12
441	Synthesis of oxygenated heterocycles from cyclic allylsiloxanes using ring-closing olefin metathesis. Tetrahedron Letters, 1997, 38, 7861-7864.	1.4	85
442	A very short and efficient synthesis of (+)-conocephalenol. Tetrahedron Letters, 1997, 38, 8853-8854.	1.4	13
443	Synthesis of (±)-isoavenaciolide and of (±)-ethisolide from (±)-7-oxabicyclo[2.2.1]hept-5-en-2-one Tetrahedron, 1996, 52, 629-638.	1.9	12
444	A short access to (+)-ptilocaulin. Tetrahedron Letters, 1996, 37, 5091-5094.	1.4	35
445	An easy access to substituted aminopyranones from L-pyroglutamic acid. Tetrahedron Letters, 1996, 37, 8173-8174.	1.4	8
446	Carbonâ€"carbon bond formation in carbohydrates by a photoreductive cyclization reaction. Carbohydrate Research, 1996, 291, 189-196.	2.3	3
447	The thermal rearrangement of N-alkyl-N-vinylpropargylamines into 2-methylpyrroles. A new synthesis of annulated[b]pyrroles. Tetrahedron Letters, 1996, 37, 6709-6710.	1.4	28
448	Applications of photoinduced electron transfer processes to ketone, aldehyde, and ester derivatives in organic synthesis. Advances in Electron Transfer Chemistry, 1996, , 141-195.	1.0	13
449	Ring opening of cyclopropylketones induced by photochemical electron transfer. Tetrahedron, 1995, 51, 11751-11764.	1.9	62
450	Formation of optically active 3-hydroxypiperidines. Tetrahedron Letters, 1995, 36, 549-552.	1.4	56

#	Article	IF	Citations
451	An approach to the skeleton of eriolanin. Tetrahedron Letters, 1995, 36, 2067-2070.	1.4	15
452	N-Bromosuccinimide mediated ring-opening of cyclopropylcarbinols. Tetrahedron Letters, 1995, 36, 3691-3694.	1.4	6
453	Reactivity of tris(trimethylsilyl)silyl radical with \hat{l}^2 -alkenyloxyenones. Tetrahedron Letters, 1995, 36, 7235-7238.	1.4	8
454	A formal synthesis of ptaquilosin the aglycon of a potent bracken carcinogen ptaquiloside. Tetrahedron Letters, 1995, 36, 7877-7880.	1.4	23
455	Reductive Oxa Ring Opening of 7-Oxabicyclo[2.2.1]heptan-2-ones. Synthesis of CalphaGalactosides of Carbapentopyranoses. Journal of Organic Chemistry, 1995, 60, 8351-8359.	3.2	44
456	A Selective and Efficient Demesylation Using Methylmagnesium Bromide. Synthetic Communications, 1995, 25, 3109-3112.	2.1	16
457	A very useful and mild method for the protection and deprotection of carboxylic acids. Tetrahedron Letters, 1994, 35, 1539-1540.	1.4	30
458	Photoreduction of \hat{l}_{\pm} -ketoamides; cyclization of unsaturated captodative radicals. Tetrahedron Letters, 1994, 35, 1541-1544.	1.4	17
459	Photochemical access to alkyl 3-deoxyglycopyranosid-4-uloses. Carbohydrate Research, 1994, 259, 141-146.	2.3	9
460	Total synthesis of ethisolide from"naked sugars― Tetrahedron Letters, 1994, 35, 1205-1208.	1.4	14
461	Formation of radicals by irradiation of alkyl halides in the presence of triethylamine. Tetrahedron Letters, 1994, 35, 8161-8162.	1.4	48
462	Intramolecular quenching of iminium ions generated by photooxidation of aminoalcohols with ketones. A new synthesis of oxazines and oxazoles. Tetrahedron Letters, 1994, 35, 1715-1718.	1.4	18
463	Photochemical ring opening of cyclopropyl ketones induced by electron transfer. Tetrahedron Letters, 1993, 34, 8107-8110.	1.4	23
464	N-(Phenylseleno)phthalimide: A useful reagent for the $\hat{l}\pm$ -selenylation of ketones and aldehydes Tetrahedron Letters, 1993, 34, 7755-7756.	1.4	24
465	Dehydrogenation of carboxamidoenamines with manganese acetate and copper acetate. Tetrahedron Letters, 1993, 34, 5583-5586.	1.4	20
466	Photoreductive cyclization of N,N-dialkyl- \hat{l}^2 -oxoamides: synthesis of piperidines and \hat{l} -lactams. Tetrahedron, 1993, 49, 7691-7700.	1.9	12
467	Generation of radical cations from enamines and their addition to unactivated olefins. Journal of the Chemical Society Chemical Communications, 1993, , 1218.	2.0	18
468	Total synthesis of (.+)-actinidine and of (.+)-isooxyskytanthine. Journal of Organic Chemistry, 1993, 58, 2351-2354.	3.2	28

#	Article	IF	CITATIONS
469	Radical Cyclization of N-Alkyl-N-Unsaturated Alkyl-β-Carboxamidoenamines Induced by Manganese Acetate. Synlett, 1993, 1993, 202-204.	1.8	26
470	Regio- and stereo-selective cyclizations. Application to natural products synthesis. Pure and Applied Chemistry, 1992, 64, 1883-1888.	1.9	11
471	Conformational analysis of î±-methoxyketones. A photoelectron spectroscopic investigation of 3-methoxybicyclo[2.2.1]heptan-2-ones Tetrahedron, 1992, 48, 2401-2414.	1.9	4
472	A 4-Dimethylaminopyridine-Catalyzed Aminolysis of \hat{l}^2 -Ketoesters. Formation of \hat{l}^2 -Ketoamides. Synthesis, 1989, 1989, 753-755.	2.3	32
473	A biomimetic entry in the hexacyclic tuboxenin ring system methylene-indolines, indolenines and indoleniniums, XXII. Tetrahedron Letters, 1987, 28, 1773-1775.	1.4	12
474	Photodehydrogenation of substituted pyrrolidines hydrogen transfer induced by benzophenone. Tetrahedron Letters, 1978, 19, 4941-4944.	1.4	12
475	Photolysis of 2(n-alkyl-arylsulfonylamido) cyclonexenone An unusual and useful desulfonation reaction (1). Tetrahedron Letters, 1976, 17, 3919-3922.	1.4	9
476	Iron-Catalyzed Diastereoselective Synthesis of Disubstituted Morpholines via Câ \in "O or Câ \in "N Bond Formation. Synlett, 0, 32, .	1.8	0
477	Cycloadditions of enones. , 0, , 1369-1565.		1
478	Rhodium(III)â€Catalyzed Heteroannulations of 3â€Sulfolene Derivatives via C(sp2)–H Activation. Access to Pyridine ortho‑Quinodimethane Precursors. European Journal of Organic Chemistry, 0, , .	2.4	0