
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/179423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Targeting Replication Protein A for Cancer Therapy. Frontiers in Oncology, 2022, 12, 826655.	2.8	6
2	Characterization and initial demonstration of <i>inÂvivo</i> efficacy of a novel heat-activated metalloenediyne anti-cancer agent. International Journal of Hyperthermia, 2022, 39, 405-413.	2.5	0
3	Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Frontiers in Oncology, 2022, 12, 850883.	2.8	12
4	Abstract 1406: Design and synthesis of novel cardiac glycosides by targeting the DNA damage response for cancer therapy. Cancer Research, 2022, 82, 1406-1406.	0.9	0
5	OB-Folds and Genome Maintenance: Targeting Protein–DNA Interactions for Cancer Therapy. Cancers, 2021, 13, 3346.	3.7	6
6	Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Molecular Cell, 2021, 81, 3128-3144.e7.	9.7	142
7	Structure-Guided Optimization of Replication Protein A (RPA)–DNA Interaction Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1118-1124.	2.8	16
8	Discovery and development of novel DNA-PK inhibitors by targeting the unique Ku–DNA interaction. Nucleic Acids Research, 2020, 48, 11536-11550.	14.5	19
9	Platinum-Induced Ubiquitination of Phosphorylated H2AX by RING1A Is Mediated by Replication Protein A in Ovarian Cancer. Molecular Cancer Research, 2020, 18, 1699-1710.	3.4	9
10	Small-Molecule Inhibitor Screen for DNA Repair Proteins. Methods in Molecular Biology, 2019, 1999, 217-221.	0.9	1
11	Abstract 1301: Targeting protein-DNA interactions in the DNA damage response: Lead identification and optimization for novel inhibitors of RPA and Ku. , 2019, , .		0
12	Modulating DNA Repair Pathways to Improve Precision Genome Engineering. ACS Chemical Biology, 2018, 13, 389-396.	3.4	99
13	Characterization of Thermally Activated Metalloenediyne Cytotoxicity in Human Melanoma Cells. Radiation Research, 2018, 190, 107-116.	1.5	5
14	Abstract 2829: Targeting the DNA damage response and DNA-PK signaling via small molecule Ku inhibitors. , 2018, , .		2
15	Design and Structure-Guided Development of Novel Inhibitors of the Xeroderma Pigmentosum Group A (XPA) Protein–DNA Interaction. Journal of Medicinal Chemistry, 2017, 60, 8055-8070.	6.4	12
16	Abstract LB-119: Targeting DNA-PK via small molecule inhibitors of the Ku-DNA interaction. , 2017, , .		0
17	Abstract 1416: Development of small molecule inhibitors for cancer therapy by targeting RPA and XPA nucleotide excision repair proteins. , 2017, , .		0
18	DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair, 2016, 40, 35-46.	2.8	45

#	Article	IF	CITATIONS
19	DNA repair targeted therapy: The past or future of cancer treatment?. , 2016, 160, 65-83.		307
20	Chemical inhibitor targeting the replication protein A–DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer. Biochemical Pharmacology, 2015, 93, 25-33.	4.4	42
21	Recognition of DNA Termini by the C-Terminal Region of the Ku80 and the DNA-Dependent Protein Kinase Catalytic Subunit. PLoS ONE, 2015, 10, e0127321.	2.5	19
22	Testing the Metal of ERCC2 in Predicting the Response to Platinum-Based Therapy. Cancer Discovery, 2014, 4, 1118-1119.	9.4	1
23	Unraveling the Complexities of DNA-Dependent Protein Kinase Autophosphorylation. Molecular and Cellular Biology, 2014, 34, 2162-2175.	2.3	58
24	The Novel, Small-Molecule DNA Methylation Inhibitor SGI-110 as an Ovarian Cancer Chemosensitizer. Clinical Cancer Research, 2014, 20, 6504-6516.	7.0	87
25	Exploring a structural protein–drug interactome for new therapeutics in lung cancer. Molecular BioSystems, 2014, 10, 581-591.	2.9	12
26	Extracellular Tissue Transglutaminase Activates Noncanonical NF-κB Signaling and Promotes Metastasis in Ovarian Cancer. Neoplasia, 2013, 15, 609-IN8.	5.3	52
27	Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma. Biochemical and Biophysical Research Communications, 2013, 439, 586-590.	2.1	33
28	Chemotherapy induced DNA damage response. Cancer Biology and Therapy, 2013, 14, 379-389.	3.4	216
29	Abstract 4623: The novel, small molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer , 2013, , .		2
30	Targeting the Nucleotide Excision Repair Pathway for Therapeutic Applications. , 2012, , 109-117.		3
31	Complex Cisplatin-Double Strand Break (DSB) Lesions Directly Impair Cellular Non-Homologous End-Joining (NHEJ) Independent of Downstream Damage Response (DDR) Pathways. Journal of Biological Chemistry, 2012, 287, 24263-24272.	3.4	49
32	Abstract 4753: Targeting nucleotide excision repair: Chemical synthetic lethality and biology-based combination therapy. , 2012, , .		4
33	Multiple protein-protein interactions within the DNA-PK complex are mediated by the C-terminus of Ku 80. International Journal of Biochemistry and Molecular Biology, 2012, 3, 36-45.	0.1	6
34	Identification of Mre11 as a Target for Heat Radiosensitization. Radiation Research, 2011, 176, 323.	1.5	8
35	Targeting Ovarian Tumor Cell Adhesion Mediated by Tissue Transglutaminase. Molecular Cancer Therapeutics, 2011, 10, 626-636.	4.1	35
36	Interrogation of Nucleotide Excision Repair Capacity: Impact on Platinum-Based Cancer Therapy. Antioxidants and Redox Signaling, 2011, 14, 2465-2477.	5.4	18

#	Article	IF	CITATIONS
37	Repair Of DNA Double-Strand Breaks By Non-Homologous End-Joining Is Independent Of Cisplatin-Induced Checkpoint Activation And Downstream Damage Response Pathways In A Non-Small Cell Lung Cancer Cell Culture Model. , 2011, , .		0
38	DNA Repair: From Genome Maintenance to Biomarker and Therapeutic Target. Clinical Cancer Research, 2011, 17, 6973-6984.	7.0	97
39	Coordination of DNA–PK Activation and Nuclease Processing of DNA Termini in NHEJ. Antioxidants and Redox Signaling, 2011, 14, 2531-2543.	5.4	29
40	Novel Irreversible Small Molecule Inhibitors of Replication Protein A Display Single-Agent Activity and Synergize with Cisplatin. Molecular Cancer Therapeutics, 2011, 10, 1796-1806.	4.1	47
41	Current Advances in DNA Repair: Regulation of Enzymes and Pathways Involved in Maintaining Genomic Stability. Antioxidants and Redox Signaling, 2011, 14, 2461-2464.	5.4	1
42	Abstract 2320: In vivo characterization of small molecule inhibitors of replication protein A: Implications for cancer therapy. , 2011, , .		0
43	Purification and characterization of exonuclease-free Artemis: Implications for DNA-PK-dependent processing of DNA termini in NHEJ-catalyzed DSB repair. DNA Repair, 2010, 9, 670-677.	2.8	30
44	Targeting the OB-Folds of Replication Protein A with Small Molecules. Journal of Nucleic Acids, 2010, 2010, 1-11.	1.2	22
45	Cisplatin Sensitizes DNA To Ionizing Radiation By Impairing Non-Homologous End-Joining. , 2010, , .		0
46	Targeted Inhibition of Replication Protein A Reveals Cytotoxic Activity, Synergy with Chemotherapeutic DNA-Damaging Agents, and Insight into Cellular Function. Cancer Research, 2010, 70, 3189-3198.	0.9	73
47	Identification of Novel Small Molecule Inhibitors of the XPA Protein Using in Silico Based Screening. ACS Chemical Biology, 2010, 5, 953-965.	3.4	34
48	Photo-Cross-Linking of XPCâ ``Rad23B to Cisplatin-Damaged DNA Reveals Contacts with Both Strands of the DNA Duplex and Spans the DNA Adduct. Biochemistry, 2010, 49, 669-678.	2.5	25
49	Intrinsic hTRF1 fluorescence quenching reveals details of telomere DNA binding activity: Impact of DNA length, structure and position of telomeric repeats. Archives of Biochemistry and Biophysics, 2010, 493, 207-212.	3.0	3
50	Telomerase-associated Protein 1, HSP90, and Topoisomerase IIα Associate Directly with the BLM Helicase in Immortalized Cells Using ALT and Modulate Its Helicase Activity Using Telomeric DNA Substrates. Journal of Biological Chemistry, 2009, 284, 14966-14977.	3.4	47
51	Molecular analysis of Ku redox regulation. BMC Molecular Biology, 2009, 10, 86.	3.0	16
52	Targeting Nucleotide Excision Repair as a Mechanism to Increase Cisplatin Efficacy. , 2009, , 177-187.		3
53	Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Research, 2008, 18, 64-72.	12.0	242
54	A special issue on DNA damage responses and genome maintenance. Cell Research, 2008, 18, 1-2.	12.0	6

#	Article	IF	CITATIONS
55	ATM mediates repression of DNA end-degradation in an ATP-dependent manner. DNA Repair, 2008, 7, 464-475.	2.8	18
56	DNA-Dependent Conformational Changes in the Ku Heterodimer. Biochemistry, 2008, 47, 4359-4368.	2.5	32
57	A mechanism for DNA-PK activation requiring unique contributions from each strand of a DNA terminus and implications for microhomology-mediated nonhomologous DNA end joining. Nucleic Acids Research, 2008, 36, 4022-4031.	14.5	30
58	Pre-Steady-State Binding of Damaged DNA by XPCâ^'hHR23B Reveals a Kinetic Mechanism for Damage Discriminationâ€. Biochemistry, 2006, 45, 1961-1969.	2.5	48
59	Kinetic Analysis of the Ku-DNA Binding Activity Reveals a Redox-dependent Alteration in Protein Structure That Stimulates Dissociation of the Ku-DNA Complex. Journal of Biological Chemistry, 2006, 281, 13596-13603.	3.4	40
60	Nitric oxide and cisplatin resistance: NO easy answers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4337-4338.	7.1	32
61	Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Reports, 2005, 6, 83-89.	4.5	132
62	Cisplatin Sensitizes Cancer Cells to Ionizing Radiation via Inhibition of Nonhomologous End Joining. Molecular Cancer Research, 2005, 3, 277-285.	3.4	130
63	Differential activation of DNA-PK based on DNA strand orientation and sequence bias. Nucleic Acids Research, 2005, 33, 152-161.	14.5	36
64	DNA Damage Induced Hyperphosphorylation of Replication Protein A. 2. Characterization of DNA Binding Activity, Protein Interactions, and Activity in DNA Replication and Repair. Biochemistry, 2005, 44, 8438-8448.	2.5	62
65	DNA Damage Induced Hyperphosphorylation of Replication Protein A. 1. Identification of Novel Sites of Phosphorylation in Response to DNA Damage. Biochemistry, 2005, 44, 8428-8437.	2.5	72
66	Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Human Molecular Genetics, 2004, 13, 1919-1932.	2.9	139
67	Development of a high-throughput screen for inhibitors of replication protein A and its role in nucleotide excision repair. Molecular Cancer Therapeutics, 2004, 3, 385-91.	4.1	32
68	RPA Phosphorylation in Mitosis Alters DNA Binding and Proteinâ^'Protein Interactionsâ€. Biochemistry, 2003, 42, 3255-3264.	2.5	118
69	Interaction and Stimulation of Human FEN-1 Nuclease Activities by Heterogeneous Nuclear Ribonucleoprotein A1 in α-Segment Processing during Okazaki Fragment Maturationâ€. Biochemistry, 2003, 42, 15045-15052.	2.5	23
70	Behavior of T7 RNA Polymerase and Mammalian RNA Polymerase II at Site-specific Cisplatin Adducts in the Template DNA. Journal of Biological Chemistry, 2003, 278, 35791-35797.	3.4	86
71	Xeroderma Pigmentosum Complementation Group A Protein (XPA) Modulates RPA-DNA Interactions via Enhanced Complex Stability and Inhibition of Strand Separation Activity. Journal of Biological Chemistry, 2002, 277, 16096-16101.	3.4	75
72	Partial Reconstitution of Human DNA Mismatch Repair In Vitro: Characterization of the Role of Human Replication Protein A. Molecular and Cellular Biology, 2002, 22, 2037-2046.	2.3	75

#	Article	IF	CITATIONS
73	Strand-Specific Binding of RPA and XPA to Damaged Duplex DNAâ€. Biochemistry, 2002, 41, 2402-2408.	2.5	68
74	DNA-Dependent Protein Kinase in Apoptosis. , 2001, 39, 693-700.		0
75	TRF1 Inhibits Telomere C-Strand DNA Synthesis in Vitro. Biochemistry, 2001, 40, 2426-2432.	2.5	14
76	Stopped-flow Kinetic Analysis of Replication Protein A-binding DNA. Journal of Biological Chemistry, 2001, 276, 22630-22637.	3.4	53
77	Overexpression and Purification of Human XPA Using a Baculovirus Expression System. Protein Expression and Purification, 2000, 19, 1-11.	1.3	24
78	Physiological functions of protein kinase inhibitors. Exs, 2000, 89, 109-121.	1.4	1
79	Replication Protein A (RPA) Binding to Duplex Cisplatin-damaged DNA Is Mediated through the Generation of Single-stranded DNA. Journal of Biological Chemistry, 1999, 274, 14972-14978.	3.4	92
80	Interactions of mammalian proteins with cisplatin-damaged DNA. Journal of Inorganic Biochemistry, 1999, 77, 83-87.	3.5	28
81	Effect of DNA Polymerases and High Mobility Group Protein 1 on the Carrier Ligand Specificity for Translesion Synthesis past Platinumâ^'DNA Adductsâ€. Biochemistry, 1999, 38, 11026-11039.	2.5	129
82	Human Replication Protein A Preferentially Binds Cisplatin-Damaged Duplex DNA in Vitroâ€. Biochemistry, 1998, 37, 8808-8815.	2.5	66
83	Synthesis of the Mammalian Telomere Lagging Strand in Vitro. Journal of Biological Chemistry, 1997, 272, 11678-11681.	3.4	24
84	Mechanism of DNA-Dependent Protein Kinase Inhibition by cis-Diamminedichloroplatinum(II)-Damaged DNA. Biochemistry, 1997, 36, 7586-7593.	2.5	42
85	High-mobility group 1 protein inhibits helicase catalyzed displacement of cisplatin-damaged DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1354, 279-290.	2.4	11
86	Cisplatinâ^'DNA Binding Specificity of Calf High-Mobility Group 1 Proteinâ€. Biochemistry, 1996, 35, 2992-3000.	2.5	34
87	Human Ku Autoantigen Binds Cisplatin-damaged DNA but Fails to Stimulate Human DNA-activated Protein Kinase. Journal of Biological Chemistry, 1996, 271, 13861-13867.	3.4	51
88	Effects of the anticancer drug cis-diamminedichloroplatinum(II) on the activities of calf thymus DNA polymerase .epsilon Biochemistry, 1993, 32, 841-848.	2.5	34
89	DNA substrate specificity of DNA helicase E from calf thymus. Nucleic Acids Research, 1992, 20, 6075-6080.	14.5	15
90	DNA helicase E and DNA polymerase .epsilon. functionally interact for displacement synthesis. Biochemistry, 1992, 31, 9008-9015.	2.5	13