Harro A J Meijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1794150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Guidelines forδ13C Measurements. Analytical Chemistry, 2006, 78, 2439-2441.	6.5	762
2	The Use of Electrolysis for Accurate δ ¹⁷ 0 and δ ¹⁸ 0 Isotope Measurements in Water. Isotopes in Environmental and Health Studies, 1998, 34, 349-369.	1.0	194
3	Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 2016, 6, 390-393.	18.8	156
4	After two decades a second anchor for the VPDBδ13C scale. Rapid Communications in Mass Spectrometry, 2006, 20, 3165-3166.	1.5	147
5	Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, <i>n</i> -Alkanes, Fatty Acid Methyl Esters, Clycines, <scp>l</scp> -Valines, Polyethylenes, and Oils. Analytical Chemistry, 2016, 88, 4294-4302.	6.5	126
6	On-Line Hydrogen-Isotope Measurements of Organic Samples Using Elemental Chromium: An Extension for High Temperature Elemental-Analyzer Techniques. Analytical Chemistry, 2015, 87, 5198-5205.	6.5	77
7	Radiocarbon Dating at Groningen: New and Updated Chemical Pretreatment Procedures. Radiocarbon, 2020, 62, 63-74.	1.8	58
8	High-Accuracy ¹⁴ C Measurements for Atmospheric CO ₂ Samples by AMS. Radiocarbon, 2006, 48, 355-372.	1.8	33
9	Inverse carbon dioxide flux estimates for the Netherlands. Journal of Geophysical Research, 2012, 117, .	3.3	24
10	Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage. International Journal of Greenhouse Gas Control, 2013, 19, 420-431.	4.6	19
11	Evaluation and Inter-Comparison of Oxygen-Based OC-EC Separation Methods for Radiocarbon Analysis of Ambient Aerosol Particle Samples. Atmosphere, 2017, 8, 226.	2.3	17
12	USCS44, a new highâ€purity calcium carbonate reference material for <i>δ</i> ¹³ C measurements. Rapid Communications in Mass Spectrometry, 2021, 35, e9006.	1.5	16
13	CO ₂ , Î'O ₂ /N ₂ and APO: observations from the Lutjewad, Mace Head and F3 platform flask sampling network. Atmospheric Chemistry and Physics, 2010, 10, 10691-10704.	4.9	15
14	A new highâ€quality set of singly (² H) and doubly (² H and ¹⁸ O) stable isotope labeled reference waters for biomedical and other isotopeâ€labeled research. Rapid Communications in Mass Spectrometry, 2015, 29, 311-321.	1.5	15
15	Compatibility of Atmospheric ¹⁴ CO ₂ Measurements: Comparing the Heidelberg Low-Level Counting Facility to International Accelerator Mass Spectrometry (AMS) Laboratories. Radiocarbon, 2017, 59, 875-883.	1.8	15
16	AN INDEPENDENT ASSESSMENT OF UNCERTAINTY FOR RADIOCARBON ANALYSIS WITH THE NEW GENERATION HIGH-YIELD ACCELERATOR MASS SPECTROMETERS. Radiocarbon, 2021, 63, 1-22.	1.8	15
17	Estimation and calibration of the water isotope differential diffusion length in ice core records. Cryosphere, 2015, 9, 1601-1616.	3.9	14
18	Stable isotope quality assurance using the â€~Calibrated IRMS' strategy. Isotopes in Environmental and Health Studies, 2009, 45, 150-163.	1.0	11

HARRO A J MEIJER

#	Article	IF	CITATIONS
19	Intracavity OptoGalvanic Spectroscopy Not Suitable for Ambient Level Radiocarbon Detection. Analytical Chemistry, 2015, 87, 9025-9032.	6.5	11
20	A thoroughly validated spreadsheet for calculating isotopic abundances (² H,) Tj ETQq0 0 0 rgBT /C Communications in Mass Spectrometry, 2015, 29, 1351-1356.	Overlock 10 1.5	0 Tf 50 707 To 10
21	Contamination on AMS Sample Targets by Modern Carbon is Inevitable. Radiocarbon, 2016, 58, 407-418.	1.8	9
22	High Contribution of Biomass Combustion to PM2.5 in the City Centre of Naples (Italy). Atmosphere, 2019, 10, 451.	2.3	9
23	A stable isotope toolbox for water and inorganic carbon cycle studies. Nature Reviews Earth & Environment, 2021, 2, 699-719.	29.7	7
24	Constraints on the Î' ² H diffusion rate in firn from field measurements at Summit, Greenland. Cryosphere, 2015, 9, 1089-1103.	3.9	5
25	An automated method for thermal-optical separation of aerosol organic/elemental carbon for 13C analysis at the sub-μgC level: A comprehensive assessment. Science of the Total Environment, 2022, 804, 150031.	8.0	5
26	Total energy expenditure assessed by salivary doubly labelled water analysis and its relevance for shortâ€ŧerm energy balance in humans. Rapid Communications in Mass Spectrometry, 2016, 30, 143-150.	1.5	4
27	lce–liquid isotope fractionation factors for 18O and 2H deduced from the isotopic correction constants for the triple point of water. Isotopes in Environmental and Health Studies, 2018, 54, 304-311.	1.0	4
28	The Table of Standard Atomic Weights—An exercise in consensus. Rapid Communications in Mass Spectrometry, 2022, 36, e8864.	1.5	3
29	Short-term, but not long-term, increased day time workload leads to decreased night time energetics in a free living song bird. Journal of Experimental Biology, 2019, 222, .	1.7	1
30	Final report on pilot study CCQM-P211: carbon isotope delta measurements of vanillin. Metrologia, 2022, 59, 08005.	1.2	1
31	First use of triply labelled water analysis for energy expenditure measurements in mice. Scientific Reports, 2022, 12, 6351.	3.3	1
32	Reply to Comment Submitted by Murnick et al. on "Intracavity OptoGalvanic Spectroscopy Not Suitable for Ambient Level Radiocarbon Detection― Analytical Chemistry, 2016, 88, 4574-4577.	6.5	0
33	Absolute isotope ratios of carbon dioxide – a feasibility study. Journal of Analytical Atomic Spectrometry, 2020, 35, 2545-2564.	3.0	0