
Keigo Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1790418/publications.pdf Version: 2024-02-01

KEICO SUZUKI

#	Article	IF	CITATIONS
1	Optical Band Gap of Barium Titanate Nanoparticles Prepared by RF-plasma Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2005, 44, 2081-2082.	1.5	137
2	Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD. Journal of Alloys and Compounds, 2006, 419, 234-242.	5.5	45
3	Monodispersed and Wellâ€Crystallized Zinc Oxide Nanoparticles Fabricated by Microemulsion Method. Journal of the American Ceramic Society, 2008, 91, 3850-3855.	3.8	42
4	Size driven phase transition of barium titanate nanoparticles prepared by plasma chemical vapor deposition. Journal of Materials Science, 2005, 40, 1289-1292.	3.7	37
5	Enhanced luminescence in Eu-doped ZnO nanocrystalline films. Applied Physics Letters, 2015, 107, .	3.3	27
6	Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum. Journal of Applied Physics, 2013, 113, .	2.5	24
7	Ferroelectric 90° domain structure in a thin film of BaTiO3 fine ceramics observed by 300kV electron holography. Applied Physics Letters, 2008, 92, .	3.3	21
8	Optical Properties and Fabrication of Cuprous Oxide Nanoparticles by Microemulsion Method. Journal of the American Ceramic Society, 2011, 94, 2379-2385.	3.8	21
9	Well-crystallized barium titanate nanoparticles prepared by plasma chemical vapor deposition. Materials Letters, 2004, 58, 1650-1654.	2.6	19
10	Optical properties of well-crystallized and size-tuned ZnO quantum dots. Applied Physics Letters, 2009, 94, .	3.3	19
11	Structural and optical properties of nanocrystalline ZnO thin films derived from clear emulsion of monodispersed ZnO nanocrystals. Journal of Materials Research, 2009, 24, 2243-2251.	2.6	17
12	Well-crystallized zinc oxide quantum dots with narrow size distribution. Journal of Nanoparticle Research, 2009, 11, 1349-1360.	1.9	17
13	Preparation and dielectric properties of polycrystalline films with dense nano-structured BaTiO3 by chemical vapor deposition using inductively coupled plasma. Vacuum, 2006, 80, 519-529.	3.5	16
14	Fabrication of Monodispersed Barium Titanate Nanoparticles with Narrow Size Distribution. Journal of the American Ceramic Society, 2008, 91, 1721-1724.	3.8	15
15	Size-selected copper oxide nanoparticles synthesized by laser ablation. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	15
16	High-density excitation effect on photoluminescence in ZnO nanoparticles. Journal of Applied Physics, 2010, 107, 124311.	2.5	11
17	Blue photoluminescence and Auger recombination of carriers in SrTiO3 nanoparticles. Applied Physics Letters, 2011, 99, .	3.3	11
18	Dielectric Properties of BaTiO3Films Prepared by RF-Plasma Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2005, 44, 8528-8535.	1.5	7

KEIGO SUZUKI

#	ARTICLE	IF	CITATIONS
19	High Energy-Resolution Electron Energy-Loss Spectroscopy Study of Electronic Structures of Barium Titanate Nanocrystals. Japanese Journal of Applied Physics, 2005, 44, 7593-7597.	1.5	7
20	Effect of surface charges on the polarization of BaTiO ₃ thin films investigated by <scp>UHV</scp> â€ <scp>SPM</scp> . Journal of the American Ceramic Society, 2018, 101, 4677-4688.	3.8	7
21	Charge injection and decay of nanoscale dielectric films resolved via dynamic scanning probe microscopy. Journal of the American Ceramic Society, 2021, 104, 5157-5167.	3.8	6
22	Dielectric Properties of BaTiO3Thin Films Prepared by Laser Ablation. Japanese Journal of Applied Physics, 2006, 45, 7806-7812.	1.5	5
23	Fabrication of well-dispersed barium titanate nanoparticles by the electrospray of a colloidal solution. Journal of Materials Research, 2009, 24, 1543-1552.	2.6	5
24	Effects of Sn ²⁺ lon Size on Sn Doped SrTiO ₃ . Japanese Journal of Applied Physics, 2013, 52, 09KC04.	1.5	5
25	Thermal Behavior of BaTiO3 Particles Synthesized by Plasma Chemical Vapor Deposition. Journal of the American Ceramic Society, 2006, 89, 1461-1464.	3.8	4
26	Effect of oxygen injection on synthesizing barium titanate nanoparticles by plasma chemical vapor deposition. Journal of Materials Science, 2006, 41, 5346-5358.	3.7	4
27	Optical Properties and Size-Selected Fabrication of Monodispersed Zinc Oxide Quantum Dots by Laser Ablation. The Review of Laser Engineering, 2011, 39, 171-177.	0.0	0
28	Nanoscale characterization of ferroelectric materials by scanning probe microscope under ultrahigh vacuum. , 2014, , .		0
29	Nanoscale characterization of ferroelectric materials by scanning probe microscope under ultrahigh vacuum. , 2014, , .		0