Grant S Hansman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1789834/publications.pdf

Version: 2024-02-01

87 papers 4,651 citations

94433 37 h-index 106344 65 g-index

94 all docs 94 docs citations 94 times ranked 2920 citing authors

#	Article	IF	CITATIONS
1	Proposal for a unified norovirus nomenclature and genotyping. Archives of Virology, 2013, 158, 2059-2068.	2.1	488
2	Norovirus Recombination in ORF1/ORF2 Overlap. Emerging Infectious Diseases, 2005, 11, 1079-1085.	4.3	257
3	Detection of human sapovirus by real-time reverse transcription-polymerase chain reaction. Journal of Medical Virology, 2006, 78, 1347-1353.	5.0	228
4	Norovirus Infections in Symptomatic and Asymptomatic Food Handlers in Japan. Journal of Clinical Microbiology, 2007, 45, 3996-4005.	3.9	180
5	Genetic and antigenic diversity among noroviruses. Journal of General Virology, 2006, 87, 909-919.	2.9	142
6	Genetic Diversity of Norovirus and Sapovirus in Hospitalized Infants with Sporadic Cases of Acute Gastroenteritis in Chiang Mai, Thailand. Journal of Clinical Microbiology, 2004, 42, 1305-1307.	3.9	136
7	Human sapoviruses: genetic diversity, recombination, and classification. Reviews in Medical Virology, 2007, 17, 133-141.	8.3	129
8	Human norovirus inhibition by a human milk oligosaccharide. Virology, 2017, 508, 81-89.	2.4	117
9	Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability. Journal of Virology, 2011, 85, 6687-6701.	3.4	113
10	Structural Basis for Norovirus Inhibition by Human Milk Oligosaccharides. Journal of Virology, 2016, 90, 4843-4848.	3.4	110
11	Human Noroviruses' Fondness for Histo-Blood Group Antigens. Journal of Virology, 2015, 89, 2024-2040.	3.4	106
12	Existence of multiple outbreaks of viral gastroenteritis among infants in a day care center in Japan. Archives of Virology, 2005, 150, 2061-2075.	2.1	95
13	Human Milk Oligosaccharides as Promising Antivirals. Molecular Nutrition and Food Research, 2018, 62, e1700679.	3.3	92
14	Detection of norovirus and sapovirus infection among children with gastroenteritis in Ho Chi Minh City, Vietnam. Archives of Virology, 2004, 149, 1673-88.	2.1	86
15	Identification of Monomorphic and Divergent Haplotypes in the 2006-2007 Norovirus GII/4 Epidemic Population by Genomewide Tracing of Evolutionary History. Journal of Virology, 2008, 82, 11247-11262.	3.4	82
16	Norovirus GII.4 Strains and Outbreaks, Australia. Emerging Infectious Diseases, 2007, 13, 1128-1130.	4.3	80
17	Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle. Journal of Virology, 2012, 86, 3635-3646.	3.4	7 5
18	Norwalk-like virus 95/96-US strain is a major cause of gastroenteritis outbreaks in Australia. Journal of Medical Virology, 2002, 68, 113-118.	5.0	73

#	Article	IF	CITATIONS
19	Structural Basis for Norovirus Inhibition and Fucose Mimicry by Citrate. Journal of Virology, 2012, 86, 284-292.	3.4	72
20	Intergenogroup Recombination in Sapoviruses. Emerging Infectious Diseases, 2005, 11, 1914-1920.	4.3	69
21	Outbreak of Gastroenteritis Due to Sapovirus. Journal of Clinical Microbiology, 2007, 45, 1347-1349.	3.9	68
22	Novel Recombinant Sapovirus. Emerging Infectious Diseases, 2004, 10, 1874-1876.	4.3	65
23	Membrane alterations induced by nonstructural proteins of human norovirus. PLoS Pathogens, 2017, 13, e1006705.	4.7	64
24	Human Norovirus Interactions with Histo-Blood Group Antigens and Human Milk Oligosaccharides. Journal of Virology, 2016, 90, 5855-5859.	3.4	63
25	Detection of Human Enteric Viruses in Japanese Clams. Journal of Food Protection, 2008, 71, 1689-1695.	1.7	62
26	Structural Basis for Human Norovirus Capsid Binding to Bile Acids. Journal of Virology, 2019, 93, .	3.4	55
27	Proteolytic Processing of Sapovirus ORF1 Polyprotein. Journal of Virology, 2005, 79, 7283-7290.	3.4	54
28	Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly. Journal of Virology, 2015, 89, 2718-2730.	3.4	54
29	Cross-reactivity among sapovirus recombinant capsid proteins. Archives of Virology, 2005, 150, 21-36.	2.1	53
30	Human Norovirus Neutralized by a Monoclonal Antibody Targeting the Histo-Blood Group Antigen Pocket. Journal of Virology, 2019, 93, .	3.4	52
31	Diagnosis of enteric pathogens in children with gastroenteritis. Pathology, 2001, 33, 353-358.	0.6	49
32	Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization. PLoS Pathogens, 2017, 13, e1006636.	4.7	47
33	Investigation of norovirus replication in a human cell line. Archives of Virology, 2006, 151, 1291-1308.	2.1	46
34	The sweet quartet: Binding of fucose to the norovirus capsid. Virology, 2015, 483, 203-208.	2.4	46
35	Antigenic Diversity of Human Sapoviruses. Emerging Infectious Diseases, 2007, 13, 1519-1525.	4.3	42
36	Treatment of norovirus particles with citrate. Virology, 2015, 485, 199-204.	2.4	42

#	Article	IF	CITATIONS
37	Acute Gastroenteritis Caused by GI/2 Sapovirus, Taiwan, 2007. Emerging Infectious Diseases, 2007, 14, 1169-1171.	4.3	41
38	Structural Constraints on Human Norovirus Binding to Histo-Blood Group Antigens. MSphere, 2016, 1 ,	2.9	40
39	Avidity of α-fucose on human milk oligosaccharides and blood group–unrelated oligo/polyfucoses is essential for potent norovirus-binding targets. Journal of Biological Chemistry, 2018, 293, 11955-11965.	3.4	40
40	Norovirus and sapovirus infections in Thailand. Japanese Journal of Infectious Diseases, 2004, 57, 276-8.	1.2	40
41	Human Sapovirus in Clams, Japan. Emerging Infectious Diseases, 2007, 13, 620-622.	4.3	37
42	Attachment of Norovirus to Histo Blood Group Antigens: Aâ€Cooperative Multistep Process. Angewandte Chemie - International Edition, 2015, 54, 12014-12019.	13.8	37
43	Atomic Structure of the Murine Norovirus Protruding Domain and Soluble CD300lf Receptor Complex. Journal of Virology, 2018, 92, .	3.4	37
44	Sapovirus in Water, Japan. Emerging Infectious Diseases, 2007, 13, 133-135.	4.3	36
45	Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus. MSphere, 2016, 1 , .	2.9	35
46	Structural Evolution of the Emerging 2014-2015 GII.17 Noroviruses. Journal of Virology, 2016, 90, 2710-2715.	3.4	35
47	Norovirus-like VP1 particles exhibit isolate dependent stability profiles. Journal of Physics Condensed Matter, 2018, 30, 064006.	1.8	35
48	Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein. Journal of General Virology, 2006, 87, 3329-3338.	2.9	34
49	Genetic Diversity of Sapovirus in Children, Australia. Emerging Infectious Diseases, 2006, 12, 141-143.	4.3	33
50	Binding activity of norovirus and sapovirus to histo-blood group antigens. Archives of Virology, 2007, 152, 457-461.	2.1	32
51	Existence of multiple genotypes associated with acute gastroenteritis during 6-year survey of norovirus infection in Japan. Journal of Medical Virology, 2006, 78, 1318-1324.	5.0	29
52	Genetic diversity of noroviruses in Taiwan between November 2004 and March 2005. Archives of Virology, 2006, 151, 1319-1327.	2.1	27
53	Highly Conserved Configuration of Catalytic Amino Acid Residues among Calicivirus-Encoded Proteases. Journal of Virology, 2007, 81, 6798-6806.	3.4	26
54	Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. Virus Genes, 2011, 42, 16-27.	1.6	26

#	Article	IF	CITATIONS
55	Development of an antigen ELISA to detect sapovirus in clinical stool specimens. Archives of Virology, 2006, 151, 551-561.	2.1	25
56	Recombinant Sapovirus Gastroenteritis, Japan. Emerging Infectious Diseases, 2007, 13, 786-788.	4.3	25
57	Fucose-Functionalized Precision Glycomacromolecules Targeting Human Norovirus Capsid Protein. Biomacromolecules, 2018, 19, 3714-3724.	5.4	25
58	Human Norovirus Evolution in a Chronically Infected Host. MSphere, 2017, 2, .	2.9	24
59	Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates. Glycobiology, 2017, 27, 1027-1037.	2.5	23
60	Structural Basis of Nanobodies Targeting the Prototype Norovirus. Journal of Virology, 2019, 93, .	3.4	22
61	Structural Analysis of a Rabbit Hemorrhagic Disease Virus Binding to Histo-Blood Group Antigens. Journal of Virology, 2015, 89, 2378-2387.	3.4	21
62	Molecular Epidemiology of Noroviruses Detected in Food Handler-Associated Outbreaks of Gastroenteritis in Japan. Intervirology, 2008, 51, 422-426.	2.8	20
63	Analysis of early strains of the norovirus pandemic variant GII.4 Sydney 2012 identifies mutations in adaptive sites of the capsid protein. Virology, 2014, 450-451, 355-358.	2.4	20
64	Heterologous expression of human norovirus GII.4 VP1 leads to assembly of T=4 virus-like particles. Antiviral Research, 2019, 168, 175-182.	4.1	18
65	Saturation transfer difference nuclear magnetic resonance titrations reveal complex multistep-binding of l-fucose to norovirus particles. Glycobiology, 2017, 27, 80-86.	2.5	17
66	Expression of sapovirus virus-like particles in mammalian cells. Archives of Virology, 2006, 151, 399-404.	2.1	15
67	Anti-norovirus polyclonal antibody and its potential for development of an antigen-ELISA. Journal of Medical Virology, 2007, 79, 1180-1186.	5.0	15
68	Antigenic and Cryo-Electron Microscopy Structure Analysis of a Chimeric Sapovirus Capsid. Journal of Virology, 2016, 90, 2664-2675.	3.4	15
69	Structural heterogeneity of a human norovirus vaccine candidate. Virology, 2021, 553, 23-34.	2.4	15
70	Nanobody-Mediated Neutralization Reveals an Achilles Heel for Norovirus. Journal of Virology, 2020, 94, .	3.4	13
71	Characterization of polyclonal antibodies raised against sapovirus genogroup five virus-like particles. Archives of Virology, 2005, 150, 1433-1437.	2.1	12
72	Cleavage activity of the sapovirus 3C-like protease in Escherichia coli. Archives of Virology, 2005, 150, 2539-2548.	2.1	12

#	Article	IF	Citations
73	Viral Gastroenteritis in Mongolian Infants. Emerging Infectious Diseases, 2005, 11, 180-182.	4.3	12
74	Strain-dependent effects of clinical echovirus 30 outbreak isolates at the blood-CSF barrier. Journal of Neuroinflammation, 2018, 15, 50.	7.2	12
75	Mutational study of sapovirus expression in insect cells. Virology Journal, 2005, 2, 13.	3.4	11
76	Enhancement of sapovirus recombinant capsid protein expression in insect cells. FEBS Letters, 2006, 580, 4047-4050.	2.8	10
77	Structural analysis of a feline norovirus protruding domain. Virology, 2015, 474, 181-185.	2.4	9
78	Vesivirus 2117 capsids more closely resemble sapovirus and lagovirus particles than other known vesivirus structures. Journal of General Virology, 2017, 98, 68-76.	2.9	9
79	Sapovirus-like particles derived from polyprotein. Virus Research, 2008, 137, 261-265.	2.2	8
80	Structural analysis of bovine norovirus protruding domain. Virology, 2016, 487, 296-301.	2.4	7
81	Deletion analysis of the sapovirus VP1 gene for the assembly of virus-like particles. Archives of Virology, 2005, 150, 2529-2538.	2.1	5
82	Molecular epidemiology of noroviruses and sapoviruses and their role in Australian outbreaks of acute gastroenteritis. Microbiology Australia, 2012, 33, 70.	0.4	5
83	Structural analysis of a replication protein encoded by a plasmid isolated from a multiple sclerosis patient. Acta Crystallographica Section D: Structural Biology, 2019, 75, 498-504.	2.3	5
84	Natural extracts, honey, and propolis as human norovirus inhibitors. Scientific Reports, 2022, 12, 8116.	3.3	3
85	Preparation of Viral Samples for Direct Molecular Applications., 2009,,.		0
86	Production of Human Norovirus Protruding Domains in E. coli for X-ray Crystallography. Journal of Visualized Experiments, 2016, , .	0.3	0
87	Insights into the Caliciviridae Family. , 2008, , 381-399.		O