
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1787895/publications.pdf Version: 2024-02-01

MINCLIAC

#	Article	IF	CITATIONS
1	A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors and Bioelectronics, 2019, 124-125, 143-149.	10.1	237
2	A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosensors and Bioelectronics, 2019, 140, 111333.	10.1	133
3	PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Scientific Reports, 2016, 6, 19474.	3.3	123
4	CRISPR/Cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus. Communications Biology, 2020, 3, 62.	4.4	114
5	Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy, 2014, 10, 93-110.	9.1	110
6	Highly Prevalent Multidrug-Resistant Salmonella From Chicken and Pork Meat at Retail Markets in Guangdong, China. Frontiers in Microbiology, 2018, 9, 2104.	3.5	102
7	Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor. Journal of Virology, 2018, 92, .	3.4	99
8	Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry. Veterinary Research Communications, 2009, 33, 895-903.	1.6	75
9	Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells. Autophagy, 2016, 12, 1738-1758.	9.1	65
10	First Evidence of H10N8 Avian Influenza Virus Infections among Feral Dogs in Live Poultry Markets in Guangdong Province, China. Clinical Infectious Diseases, 2014, 59, 748-750.	5.8	52
11	Convergent Evolution of Human-Isolated H7N9 Avian Influenza A Viruses. Journal of Infectious Diseases, 2018, 217, 1699-1707.	4.0	49
12	Update on the pathogenesis of Haemophilus parasuis infection and virulence factors. Veterinary Microbiology, 2014, 168, 1-7.	1.9	47
13	Pathogenicity and transmission of H5N1 avian influenza viruses in different birds. Veterinary Microbiology, 2014, 168, 50-59.	1.9	43
14	Rapid detection of Salmonella Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. Sensors and Actuators B: Chemical, 2019, 284, 134-139.	7.8	43
15	An Acid-Responsive Microfluidic Salmonella Biosensor Using Curcumin as Signal Reporter and ZnO-Capped Mesoporous Silica Nanoparticles for Signal Amplification. Sensors and Actuators B: Chemical, 2020, 312, 127958.	7.8	43
16	Saikosaponin A inhibits influenza A virus replication and lung immunopathology. Oncotarget, 2015, 6, 42541-42556.	1.8	41
17	The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses. Journal of General Virology, 2011, 92, 1688-1697.	2.9	40
18	Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs. Journal of General Virology, 2013, 94, 2599-2608.	2.9	38

#	Article	IF	CITATIONS
19	Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs. Scientific Reports, 2016, 6, 20188.	3.3	37
20	Development of Serotype-Specific PCR Assays for Typing of Haemophilus parasuis Isolates Circulating in Southern China. Journal of Clinical Microbiology, 2017, 55, 3249-3257.	3.9	37
21	Long-term Survival of SARS-CoV-2 on Salmon as a Source for International Transmission. Journal of Infectious Diseases, 2021, 223, 537-539.	4.0	37
22	Complete Genome Sequence of a Novel Porcine Epidemic Diarrhea Virus in South China. Journal of Virology, 2012, 86, 10248-10249.	3.4	35
23	High-levels of resistance to quinolone and cephalosporin antibiotics in MDR-ACSSuT Salmonella enterica serovar Enteritidis mainly isolated from patients and foods in Shanghai, China. International Journal of Food Microbiology, 2018, 286, 190-196.	4.7	32
24	A microfluidic immunosensor for visual detection of foodborne bacteria using immunomagnetic separation, enzymatic catalysis and distance indication. Mikrochimica Acta, 2019, 186, 757.	5.0	30
25	Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains. Poultry Science, 2020, 99, 1606-1614.	3.4	30
26	Enhanced adherence to and invasion of PUVEC and PK-15 cells due to the overexpression of RfaD, ThyA and Mip in the ΔompP2 mutant of Haemophilus parasuis SC096 strain. Veterinary Microbiology, 2013, 162, 713-723.	1.9	29
27	<p>Molecular epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonella in China, 2007–2016</p> . Infection and Drug Resistance, 2019, Volume 12, 2885-2897.	2.7	29
28	Highly prevalent multidrug resistance and QRDR mutations in Salmonella isolated from chicken, pork and duck meat in Southern China, 2018–2019. International Journal of Food Microbiology, 2021, 340, 109055.	4.7	29
29	Prevalence, Antimicrobial Resistance, Virulence Genes and Genetic Diversity of Salmonella Isolated from Retail Duck Meat in Southern China. Microorganisms, 2020, 8, 444.	3.6	28
30	BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine, 2014, 32, 664-670.	3.8	27
31	Biological Characterizations of H5Nx Avian Influenza Viruses Embodying Different Neuraminidases. Frontiers in Microbiology, 2017, 8, 1084.	3.5	27
32	Pathogenicity and transmissibility of three avian influenza A (H5N6) viruses isolated from wild birds. Journal of Infection, 2018, 76, 286-294.	3.3	26
33	An enzyme-free biosensor for sensitive detection of <i>Salmonella</i> using curcumin as signal reporter and click chemistry for signal amplification. Theranostics, 2018, 8, 6263-6273.	10.0	26
34	Newcastle disease virus-induced autophagy mediates antiapoptotic signaling responses <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 73981-73993.	1.8	26
35	Ciprofloxacin-Resistant Salmonella enterica Serovar Kentucky ST198 in Broiler Chicken Supply Chain and Patients, China, 2010–2016. Microorganisms, 2020, 8, 140.	3.6	25
36	A new nairo-like virus associated with human febrile illness in China. Emerging Microbes and Infections, 2021, 10, 1200-1208.	6.5	25

#	Article	IF	CITATIONS
37	Two Glycosyltransferase Genes of Haemophilus parasuis SC096 Implicated in Lipooligosaccharide Biosynthesis, Serum Resistance, Adherence, and Invasion. Frontiers in Cellular and Infection Microbiology, 2016, 6, 100.	3.9	24
38	Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity. Archives of Virology, 2018, 163, 1407-1417.	2.1	24
39	A colorimetric immunosensor for determination of foodborne bacteria using rotating immunomagnetic separation, gold nanorod indication, and click chemistry amplification. Mikrochimica Acta, 2020, 187, 197.	5.0	24
40	Biofilm formation in Haemophilus parasuis: relationship with antibiotic resistance, serotype and genetic typing. Research in Veterinary Science, 2014, 97, 171-175.	1.9	23
41	Phylogenetic Analysis and Pathogenicity Assessment of the Emerging Recombinant Subgroup K of Avian Leukosis Virus in South China. Viruses, 2018, 10, 194.	3.3	23
42	Genetic diversity, phylogeography, and evolutionary dynamics of highly pathogenic avian influenza A (H5N6) viruses. Virus Evolution, 2020, 6, veaa079.	4.9	23
43	Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/caspase-1 inflammasome. Veterinary Research, 2020, 51, 53.	3.0	23
44	Transcriptome Analysis Reveals the Neuro-Immune Interactions in Duck Tembusu Virus-Infected Brain. International Journal of Molecular Sciences, 2020, 21, 2402.	4.1	23
45	A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chemistry, 2022, 381, 131801.	8.2	23
46	H7N9 Avian Influenza Virus Is Efficiently Transmissible and Induces an Antibody Response in Chickens. Frontiers in Immunology, 2018, 9, 789.	4.8	22
47	Rapid evolving H7N9 avian influenza A viruses pose new challenge. Journal of Infection, 2019, 78, 249-259.	3.3	22
48	Systematic Identification of Host Immune Key Factors Influencing Viral Infection in PBL of ALV-J Infected SPF Chicken. Viruses, 2020, 12, 114.	3.3	22
49	Recombinant chicken interferon-alpha inhibits the replication of exogenous avian leukosis virus (ALV) in DF-1 cells. Molecular Immunology, 2016, 76, 62-69.	2.2	21
50	Fourth Generation Cephalosporin Resistance Among Salmonella enterica Serovar Enteritidis Isolates in Shanghai, China Conferred by blaCTX–M–55 Harboring Plasmids. Frontiers in Microbiology, 2020, 11, 910.	3.5	21
51	The global succinylation of SARS-CoV-2–infected host cells reveals drug targets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
52	Quantitative Proteomics by Amino Acid Labeling in Foot-and-Mouth Disease Virus (FMDV)-Infected Cells. Journal of Proteome Research, 2013, 12, 363-377.	3.7	20
53	New reassortant H5N8 highly pathogenic avian influenza virus from waterfowl in Southern China. Frontiers in Microbiology, 2015, 6, 1170.	3.5	20
54	Evolving HA and PB2 genes of influenza AÂ(H7N9) viruses in the fifth wave –ÂIncreasing threat to both birds and humans?. Journal of Infection, 2017, 75, 184-186.	3.3	20

#	Article	IF	CITATIONS
55	Potential Pandemic of H7N9 Avian Influenza A Virus in Human. Frontiers in Cellular and Infection Microbiology, 2018, 8, 414.	3.9	20
56	Progress on chicken T cell immunity to viruses. Cellular and Molecular Life Sciences, 2019, 76, 2779-2788.	5.4	20
57	A rapid novel visualized loop-mediated isothermal amplification method for Salmonella detection targeting at fimW gene. Poultry Science, 2020, 99, 3637-3642.	3.4	20
58	Genomic evolution, transmission dynamics, and pathogenicity of avian influenza A (H5N8) viruses emerging in China, 2020. Virus Evolution, 2021, 7, veab046.	4.9	20
59	Competitive activation cross amplification combined with smartphone-based quantification for point-of-care detection of single nucleotide polymorphism. Biosensors and Bioelectronics, 2021, 183, 113200.	10.1	20
60	Antimicrobial susceptibility, virulence gene profiles and molecular subtypes of Salmonella Newport isolated from humans and other sources. Infection, Genetics and Evolution, 2015, 36, 294-299.	2.3	19
61	New Reassortant H5N6 Highly Pathogenic Avian Influenza Viruses in Southern China, 2014. Frontiers in Microbiology, 2016, 7, 754.	3.5	19
62	Infection of chicken bone marrow mononuclear cells with subgroup J avian leukosis virus inhibits dendritic cell differentiation and alters cytokine expression. Infection, Genetics and Evolution, 2016, 44, 130-136.	2.3	19
63	Recombinant baculovirus vaccine containing multiple M2e and adjuvant LTB induces T cell dependent, cross-clade protection against H5N1 influenza virus in mice. Vaccine, 2016, 34, 622-629.	3.8	19
64	Pathogenicity and transmission of a swine influenza A(H6N6) virus. Emerging Microbes and Infections, 2017, 6, 1-13.	6.5	19
65	Spillover of Newcastle disease viruses from poultry to wild birds in Guangdong province, southern China. Infection, Genetics and Evolution, 2017, 55, 199-204.	2.3	19
66	Phenotypic Characteristics and Genetic Diversity of <i>Salmonella enterica</i> Serotype Derby Isolated from Human Patients and Foods of Animal Origin. Foodborne Pathogens and Disease, 2017, 14, 593-599.	1.8	19
67	Evolution and Antigenic Drift of Influenza A (H7N9) Viruses, China, 2017–2019. Emerging Infectious Diseases, 2020, 26, 1906-1911.	4.3	19
68	Identification of the source of A (H10N8) virus causing human infection. Infection, Genetics and Evolution, 2015, 30, 159-163.	2.3	18
69	Exogenous avian leukosis virus-induced activation of the ERK/AP1 pathway is required for virus replication and correlates with virus-induced tumorigenesis. Scientific Reports, 2016, 6, 19226.	3.3	18
70	Immune Responses of Chickens Infected with Wild Bird-Origin H5N6 Avian Influenza Virus. Frontiers in Microbiology, 2017, 8, 1081.	3.5	18
71	Diverse biological characteristics and varied virulence of H7N9 from Wave 5. Emerging Microbes and Infections, 2019, 8, 94-102.	6.5	18
72	Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses. Frontiers in Microbiology, 2016, 7, 635.	3.5	17

#	Article	IF	CITATIONS
73	Development and application of a SYBR green real-time PCR for detection of the emerging avian leukosis virus subgroup K. Poultry Science, 2018, 97, 2568-2574.	3.4	17
74	Genetic characterization of fowl adenovirus serotype 4 isolates in Southern China reveals potential cross-species transmission. Infection, Genetics and Evolution, 2019, 75, 103928.	2.3	17
75	Phylodynamic analyses of class I Newcastle disease virus isolated in China. Transboundary and Emerging Diseases, 2021, 68, 1294-1304.	3.0	17
76	Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer. Journal of Food Measurement and Characterization, 2021, 15, 3376-3386.	3.2	17
77	Expression pattern of NLRP3 and its related cytokines in the lung and brain of avian influenza virus H9N2 infected BALB/c mice. Virology Journal, 2014, 11, 229.	3.4	16
78	The outer membrane protein P2 (OmpP2) of Haemophilus parasuis induces proinflammatory cytokine mRNA expression in porcine alveolar macrophages. Veterinary Journal, 2014, 199, 461-464.	1.7	15
79	SOCS3 control the activity of NF-κB induced by HSP70 via degradation of MyD88-adapter-like protein (Mal) in IPEC-J2 cells. International Journal of Hyperthermia, 2019, 36, 150-158.	2.5	15
80	<p>Plasmid-Encoded bla_{NDM-5} Gene That Confers High-Level Carbapenem Resistance in Salmonella Typhimurium of Pork Origin</p> . Infection and Drug Resistance, 2020, Volume 13, 1485-1490.	2.7	15
81	Systematic identification of chicken type I, II and III interferon-stimulated genes. Veterinary Research, 2020, 51, 70.	3.0	15
82	Anti-SARS-CoV-2 IgY Isolated from Egg Yolks of Hens Immunized with Inactivated SARS-CoV-2 for Immunoprophylaxis of COVID-19. Virologica Sinica, 2021, 36, 1080-1082.	3.0	15
83	Proteome Analysis in PAM Cells Reveals That African Swine Fever Virus Can Regulate the Level of Intracellular Polyamines to Facilitate Its Own Replication through ARG1. Viruses, 2021, 13, 1236.	3.3	15
84	Insights into Genomic Epidemiology, Evolution, and Transmission Dynamics of Genotype VII of Class II Newcastle Disease Virus in China. Pathogens, 2020, 9, 837.	2.8	14
85	PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice. Frontiers in Microbiology, 2015, 6, 73.	3.5	13
86	Reassortment of Avian Influenza A/H6N6 Viruses from Live Poultry Markets in Guangdong, China. Frontiers in Microbiology, 2016, 7, 65.	3.5	13
87	The evolutionary dynamics of H1N1/pdm2009 in India. Infection, Genetics and Evolution, 2018, 65, 276-282.	2.3	13
88	Continuous Reassortment of Clade 2.3.4.4 H5N6 Highly Pathogenetic Avian Influenza Viruses Demonstrating High Risk to Public Health. Pathogens, 2020, 9, 670.	2.8	13
89	Insights into the cross-species evolution of 2019 novel coronavirus. Journal of Infection, 2020, 80, 671-693.	3.3	13
90	Variation and Molecular Basis for Enhancement of Receptor Binding of H9N2 Avian Influenza Viruses in China Isolates. Frontiers in Microbiology, 2020, 11, 602124.	3.5	13

#	Article	IF	CITATIONS
91	Rapid identification of H5 avian influenza virus in chicken throat swab specimens using microfluidic real-time RT-PCR. Analytical Methods, 2014, 6, 2628.	2.7	12
92	New "One Health" Strategies Needed for Detection and Control of Emerging Pathogens at Cantonese Live Animal Markets, China. Clinical Infectious Diseases, 2014, 59, 1194-1197.	5.8	12
93	Turtles as a Possible Reservoir of Nontyphoidal <i>Salmonella</i> in Shanghai, China. Foodborne Pathogens and Disease, 2016, 13, 428-433.	1.8	12
94	Pathogenicity and transmissibility of a highly pathogenic avian influenza virus H5N6 isolated from a domestic goose in Southern China. Veterinary Microbiology, 2017, 212, 16-21.	1.9	12
95	Goose toll-like receptor 3 (TLR3) mediated IFN-Î ³ and IL-6 in anti-H5N1 avian influenza virus response. Veterinary Immunology and Immunopathology, 2018, 197, 31-38.	1.2	12
96	Evolutionary dynamics of avian influenza A H7N9 virus across five waves in mainland China, 2013–2017. Journal of Infection, 2018, 77, 205-211.	3.3	12
97	Increasing the potential ability of human infections in H5N6 avian influenza A viruses. Journal of Infection, 2018, 77, 349-356.	3.3	12
98	Genetic characteristics, pathogenicity and transmission of H5N6 highly pathogenic avian influenza viruses in Southern China. Transboundary and Emerging Diseases, 2019, 66, 2411-2425.	3.0	12
99	Adaptive Evolution of Human-Isolated H5Nx Avian Influenza A Viruses. Frontiers in Microbiology, 2019, 10, 1328.	3.5	12
100	Avian Influenza A Virus Polymerase Recruits Cellular RNA Helicase elF4A3 to Promote Viral mRNA Splicing and Spliced mRNA Nuclear Export. Frontiers in Microbiology, 2019, 10, 1625.	3.5	12
101	Genetic, Molecular, and Pathogenic Characterization of the H9N2 Avian Influenza Viruses Currently Circulating in South China. Viruses, 2019, 11, 1040.	3.3	12
102	The continuous evolution and dissemination of 2019 novel human coronavirus. Journal of Infection, 2020, 80, 671-693.	3.3	12
103	ALV-J infection induces chicken monocyte death accompanied with the production of IL-1Î ² and IL-18. Oncotarget, 2017, 8, 99889-99900.	1.8	12
104	Infectious Bronchitis Virus Infection Increases Pathogenicity of H9N2 Avian Influenza Virus by Inducing Severe Inflammatory Response. Frontiers in Veterinary Science, 2021, 8, 824179.	2.2	12
105	Antimicrobial resistance and molecular characterization of Salmonella enterica serovar Corvallis isolated from human patients and animal source foods in China. International Journal of Food Microbiology, 2020, 335, 108859.	4.7	11
106	D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs. Frontiers in Microbiology, 2014, 5, 642.	3.5	10
107	Detection of a novel highly pathogenic H7 influenza virus by duplex real-time reverse transcription polymerase chain reaction. Journal of Virological Methods, 2017, 246, 100-103.	2.1	10
108	Biosensing methods for the detection of highly pathogenic avian influenza H5N1 and H7N9 viruses. Analytical Methods, 2017, 9, 5238-5248.	2.7	10

#	Article	IF	CITATIONS
109	Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DFâ€1 cells. Microbiology and Immunology, 2018, 62, 327-340.	1.4	10
110	Therapeutic Effect of Duck Interferon-Alpha Against H5N1 Highly Pathogenic Avian Influenza Virus Infection in Peking Ducks. Journal of Interferon and Cytokine Research, 2018, 38, 145-152.	1.2	10
111	Immune-Related Gene Expression in Ducks Infected With Waterfowl-Origin H5N6 Highly Pathogenic Avian Influenza Viruses. Frontiers in Microbiology, 2019, 10, 1782.	3.5	10
112	Modeling the Reduction and Cross-Contamination of Salmonella in Poultry Chilling Process in China. Microorganisms, 2019, 7, 448.	3.6	10
113	The codon usage bias of avian influenza A viruses. Journal of Infection, 2019, 79, 174-187.	3.3	10
114	Quantitative Proteomics Reveals Changes in Vero Cells in Response to Porcine Epidemic Diarrhea Virus. Journal of Proteome Research, 2019, 18, 1623-1633.	3.7	10
115	New molecular evolutionary characteristics of H9N2 avian influenza virus in Guangdong Province, China. Infection, Genetics and Evolution, 2020, 77, 104064.	2.3	10
116	Comparative analysis of key immune protection factors in H9N2 avian influenza viruses infected and immunized specific pathogen–free chicken. Poultry Science, 2021, 100, 39-46.	3.4	10
117	A risk marker of tribasic hemagglutinin cleavage site in influenza A (H9N2) virus. Communications Biology, 2021, 4, 71.	4.4	10
118	Emergence of novel avian origin H7N9 viruses after introduction of H7â€Re3 and rLN79 vaccine strains to China. Transboundary and Emerging Diseases, 2022, 69, 213-220.	3.0	10
119	Expression of inflammation-related genes in the lung of BALB/c mice response to H7N9 influenza A virus with different pathogenicity. Medical Microbiology and Immunology, 2016, 205, 501-509.	4.8	9
120	The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds. Frontiers in Microbiology, 2018, 9, 1088.	3.5	9
121	Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China. Microorganisms, 2019, 7, 165.	3.6	9
122	Phylogeny, pathogenicity and transmissibility of a genotype XII Newcastle disease virus in chicken and goose. Transboundary and Emerging Diseases, 2020, 67, 159-170.	3.0	9
123	Evolutionary Dynamics and Age-Dependent Pathogenesis of Sub-Genotype VI.2.1.1.2.2 PPMV-1 in Pigeons. Viruses, 2020, 12, 433.	3.3	9
124	Phylogenetic analysis of infectious bronchitis virus circulating in southern China in 2016–2017 and evaluation of an attenuated strain as a vaccine candidate. Archives of Virology, 2021, 166, 73-81.	2.1	9
125	Highly Prevalent Multidrug-Resistant Campylobacter spp. Isolated From a Yellow-Feathered Broiler Slaughterhouse in South China. Frontiers in Microbiology, 2021, 12, 682741.	3.5	9
126	Pathogenicity and transmissibility of current H3N2 swine influenza virus in Southern China: A zoonotic potential. Transboundary and Emerging Diseases, 2022, 69, 2052-2064.	3.0	9

#	Article	IF	CITATIONS
127	The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection. Oncotarget, 2017, 8, 30422-30437.	1.8	9
128	A lab-on-a-tube biosensor for automatic detection of foodborne bacteria using rotated Halbach magnetic separation and Raspberry Pi imaging. Talanta, 2022, 239, 123095.	5.5	9
129	Human infections with avian influenza viruses in mainland China: A particular risk for southeastern China. Journal of Infection, 2017, 75, 274-276.	3.3	8
130	Genetic diversity and dissemination pathways of highly pathogenic H5N6 avian influenza viruses from birds in Southwestern China along the East Asian–Australian migration flyway. Journal of Infection, 2018, 76, 418-422.	3.3	8
131	Human infection with an avian-origin influenza A (H7N4) virus in Jiangsu: A potential threat to China. Journal of Infection, 2018, 77, 249-257.	3.3	8
132	Phylogeny, Pathogenicity, Transmission, and Host Immune Responses of Four H5N6 Avian Influenza Viruses in Chickens and Mice. Viruses, 2019, 11, 1048.	3.3	8
133	A quantitative risk assessment model of Salmonella contamination for the yellow-feathered broiler chicken supply chain in China. Food Control, 2021, 121, 107612.	5.5	8
134	Japanese encephalitis virus manipulates lysosomes membrane for RNA replication and utilizes autophagy components for intracellular growth. Veterinary Microbiology, 2021, 255, 109025.	1.9	8
135	Chicken Peripheral Blood Mononuclear Cells Response to Avian Leukosis Virus Subgroup J Infection Assessed by Single-Cell RNA Sequencing. Frontiers in Microbiology, 2022, 13, 800618.	3.5	8
136	Rapid detection of SARS-CoV-2, replicating or non-replicating, using RT-PCR. International Journal of Infectious Diseases, 2021, 104, 471-473.	3.3	7
137	Japanese encephalitis virus restricts HMGB1 expression to maintain MAPK pathway activation for viral replication. Veterinary Microbiology, 2021, 262, 109237.	1.9	7
138	The Biological Characteristics of Novel H5N6 Highly Pathogenic Avian Influenza Virus and Its Pathogenesis in Ducks. Frontiers in Microbiology, 2021, 12, 628545.	3.5	7
139	Buffalo-Origin Seneca Valley Virus in China: First Report, Isolation, Genome Characterization, and Evolution Analysis. Frontiers in Veterinary Science, 2021, 8, 730701.	2.2	7
140	Role of acrAB in antibiotic resistance of Haemophilus parasuis serovar 4. Veterinary Journal, 2014, 202, 191-194.	1.7	6
141	Identification and functional characterization of Toll-like receptor 2–1 in geese. BMC Veterinary Research, 2015, 11, 108.	1.9	6
142	A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China. Frontiers in Microbiology, 2016, 7, 1068.	3.5	6
143	Inhibition of ERK/MAPK suppresses avian leukosis virus subgroup A and B replication. Microbial Pathogenesis, 2017, 102, 29-35.	2.9	6
144	Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens. Frontiers in Cellular and Infection Microbiology, 2017, 7, 328.	3.9	6

#	Article	IF	CITATIONS
145	Antimicrobial Susceptibility and Molecular Typing of Salmonella Senftenberg Isolated from Humans and Other Sources in Shanghai, China, 2005 to 2011. Journal of Food Protection, 2017, 80, 146-150.	1.7	6
146	The genetic and phylogenetic analysis of a highly pathogenic influenza A H5N6 virus from a heron, southern China, 2013. Infection, Genetics and Evolution, 2018, 59, 72-74.	2.3	6
147	Different Pathogenicity and Transmissibility of Goose-Origin H5N6 Avian Influenza Viruses in Chickens. Viruses, 2019, 11, 612.	3.3	6
148	The Glaesserella parasuis phosphoglucomutase is partially required for lipooligosaccharide synthesis. Veterinary Research, 2020, 51, 97.	3.0	6
149	Wild bird-origin H5N6 avian influenza virus is transmissible in guinea pigs. Journal of Infection, 2020, 80, e20-e22.	3.3	6
150	Duck TRIM32 Functions in IFN-Î ² Signaling Against the Infection of H5N6 Highly Pathogenic Avian Influenza Virus. Frontiers in Immunology, 2020, 11, 377.	4.8	6
151	Genetic Evolution Characteristics of Genotype G57 Virus, A Dominant Genotype of H9N2 Avian Influenza Virus. Frontiers in Microbiology, 2021, 12, 633835.	3.5	6
152	The PB2 coâ€adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice. Transboundary and Emerging Diseases, 2022, 69, 1794-1803.	3.0	6
153	Avian influenza H10 subtype viruses continuously pose threat to public health in China. Journal of Infection, 2021, 83, 607-635.	3.3	6
154	Rapid Emergence of Florfenicol-Resistant Invasive Non-Typhoidal Salmonella in China: A Potential Threat to Public Health. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1282-1285.	1.4	6
155	The Transcriptional Differences of Avian CD4+CD8+ Double-Positive T Cells and CD8+ T Cells From Peripheral Blood of ALV-J Infected Chickens Revealed by Smart-Seq2. Frontiers in Cellular and Infection Microbiology, 2021, 11, 747094.	3.9	6
156	Identification of coronaviruses in farmed wild animals reveals their evolutionary origins in Guangdong, southern China. Virus Evolution, 2022, 8, .	4.9	6
157	Real-time fluorescence loop-mediated isothermal amplification for the diagnosis of hemorrhagic enteritis virus. Virus Research, 2014, 183, 50-55.	2.2	5
158	Coimmunization with recombinant epitope-expressing baculovirus enhances protective effects of inactivated H5N1 vaccine against heterologous virus. Veterinary Microbiology, 2017, 203, 143-148.	1.9	5
159	Either fadD1 or fadD2, Which Encode acyl-CoA Synthetase, Is Essential for the Survival of Haemophilus parasuis SC096. Frontiers in Cellular and Infection Microbiology, 2017, 7, 72.	3.9	5
160	Continuous adaptation of the HA and NA gene of H3N2 subtypes of avian influenza virus in South China, 2017–2018. Journal of Infection, 2019, 79, 61-74.	3.3	5
161	Duck PIAS2 negatively regulates RIG-I mediated IFN-β production by interacting with IRF7. Developmental and Comparative Immunology, 2020, 108, 103664.	2.3	5
162	Molecular Characteristics, Antigenicity, Pathogenicity, and Zoonotic Potential of a H3N2 Canine Influenza Virus Currently Circulating in South China. Frontiers in Microbiology, 2021, 12, 628979.	3.5	5

#	Article	IF	CITATIONS
163	3′UTR SL-IV and DB1 Regions Contribute to Japanese Encephalitis Virus Replication and Pathogenicity. Frontiers in Veterinary Science, 2021, 8, 703147.	2.2	5
164	Duckâ€origin H5N6 avian influenza viruses induce different pathogenic and inflammatory effects in mice. Transboundary and Emerging Diseases, 2021, 68, 3509-3518.	3.0	5
165	Survivability of highly pathogenic avian influenza virus on raw chicken meat in different environmental conditions. Lancet Microbe, The, 2022, 3, e92.	7.3	5
166	H9N2 avian influenza virus-derived natural reassortant H5N2 virus in swan containing the hemagglutinin segment from Eurasian H5 avian influenza virus with an in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site. Infection, Genetics and Evolution, 2016, 40, 17-20.	2.3	4
167	A Novel Antigenic Drift of Avian Influenza A(H7N9) Virus in Poultry, China, 2018. Journal of Infectious Diseases, 2019, 220, 723-725.	4.0	4
168	Emergence of one novel reassortment H3N8 avian influenza virus in China, originating from North America and Eurasia. Infection, Genetics and Evolution, 2021, 91, 104782.	2.3	4
169	Impedance Immunosensor Based on Interdigitated Array Microelectrodes for Rapid Detection of Avian Influenza Virus Subtype H5. Sensor Letters, 2013, 11, 1256-1260.	0.4	4
170	Natural infections of SARSâ€CoVâ€2 increased in animals: How should humans interactÂwith animals?. Journal of Medical Virology, 2022, 94, 3503-3505.	5.0	4
171	COP9 signalosome subunit 6 binds and inhibits avian leukosis virus integrase. Biochemical and Biophysical Research Communications, 2014, 453, 527-532.	2.1	3
172	High Pathogenicity of Influenza A (H10N8) Virus in Mice. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1360-1363.	1.4	3
173	Ubiquitination of non-lysine residues in the retroviral integrase. Biochemical and Biophysical Research Communications, 2017, 494, 57-62.	2.1	3
174	Characterization of three H3N2 and one new reassortant H3N8 avian influenza virus in South China. Infection, Genetics and Evolution, 2019, 75, 104016.	2.3	3
175	Can cats become infected with Covidâ€19?. Veterinary Record, 2020, 186, e20.	0.3	3
176	Duck PIAS2 Promotes H5N1 Avian Influenza Virus Replication Through Its SUMO E3 Ligase Activity. Frontiers in Microbiology, 2020, 11, 1246.	3.5	3
177	A one-step closed-tube enzyme-activated blocked probe assay based on SNP for rapid detection of Salmonella Pullorum. Poultry Science, 2021, 100, 1059-1067.	3.4	3
178	Influenza A virus protein PAâ€X suppresses host Ankrd17â€mediated immune responses. Microbiology and Immunology, 2021, 65, 48-59.	1.4	3
179	A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system. PeerJ, 2017, 5, e3514.	2.0	3
180	Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice. Virologica Sinica, 2022, 37, 38-47.	3.0	3

#	Article	IF	CITATIONS
181	Real-Time Visualization of the Infection and Replication of a Mouse-Lethal Recombinant H9N2 Avian Influenza Virus. Frontiers in Veterinary Science, 2022, 9, 849178.	2.2	3
182	Supplementation of H7N9 Virus-Like Particle Vaccine With Recombinant Epitope Antigen Confers Full Protection Against Antigenically Divergent H7N9 Virus in Chickens. Frontiers in Immunology, 2022, 13, 785975.	4.8	3
183	Increased Drug Resistance and Biofilm Formation Ability in ST34-Type Salmonella Typhimurium Exhibiting Multicellular Behavior in China. Frontiers in Microbiology, 2022, 13, 876500.	3.5	3
184	Pathogenicity of different H5N6 highly pathogenic avian influenza virus strains and host immune responses in chickens. Veterinary Microbiology, 2020, 246, 108745.	1.9	2
185	Host Innate Immune Response of Geese Infected with Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Viruses. Microorganisms, 2020, 8, 224.	3.6	2
186	PEDV infection affects the expression of polyamine-related genes inhibiting viral proliferation. Virus Research, 2022, 312, 198708.	2.2	2
187	A cell line resistant to avian leukosis virus subgroup B infection. Poultry Science, 2019, 98, 6026-6033.	3.4	1
188	Rapid evolution and gene communication of H3N2 and H1N1 influenza a viruses. Journal of Infection, 2019, 78, 491-503.	3.3	1
189	The "LLQY" motif on SARS-CoV-2 spike protein affects S incorporation into virus particles. Journal of Virology, 2022, , jvi0189721.	3.4	1
190	Survivability of H5N8 mixed wild bird droppings in different conditions. Lancet Microbe, The, 2022, 3, e332.	7.3	1
191	Residues 140–142, 199–200, 222–223, and 262 in the Surface Glycoprotein of Subgroup A Avian Leukosis Virus Are the Key Sites Determining Tva Receptor Binding Affinity and Infectivity. Frontiers in Microbiology, 2022, 13, 868377.	3.5	1
192	Genetic characterization of H7N4 avian influenza virus in China in 2018. Journal of Infection, 2019, 79, 174-187.	3.3	0
193	Generation of recombinant influenza virus bearing strep tagged PB2 and effective identification of interactional host factors. Veterinary Microbiology, 2021, 254, 108985.	1.9	0