Laiche Djouhri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1787633/publications.pdf

Version: 2024-02-01

218677 144013 3,527 61 26 57 citations h-index g-index papers 62 62 62 3191 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Involvement of caveolae in hyperglycemia-induced changes in adiponectin and leptin expressions in vascular smooth muscle cells. European Journal of Pharmacology, 2022, 919, 174701.	3.5	1
2	Follicular dendritic cells. Journal of Cellular Physiology, 2022, 237, 2019-2033.	4.1	8
3	L5 Spinal Nerve Axotomy Induces Distinct Electrophysiological Changes in Axotomized L5- and Adjacent L4-Dorsal Root Ganglion Neurons in Rats In Vivo. Journal of Neurotrauma, 2021, 38, 330-341.	3.4	2
4	A Golgi study of neurons in the camel cerebellum (Camelus dromedarius). Anatomical Record, 2021, , .	1.4	1
5	Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling. Journal of Inflammation Research, 2021, Volume 14, 5349-5365.	3.5	19
6	<p>Umbelliferone Inhibits Spermatogenic Defects and Testicular Injury in Lead-Intoxicated Rats by Suppressing Oxidative Stress and Inflammation, and Improving Nrf2/HO-1 Signaling</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4003-4019.	4.3	30
7	Changes in expression of Kv7.5 and Kv7.2 channels in dorsal root ganglion neurons in the streptozotocin rat model of painful diabetic neuropathy. Neuroscience Letters, 2020, 736, 135277.	2.1	3
8	Mutual inter-regulation between iNOS and TGF-Î ² 1: Possible molecular and cellular mechanisms of iNOS in wound healing. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165850.	3.8	6
9	A possible role for inducible arginase isoform (AI) in the pathogenesis of chronic venous leg ulcer. Journal of Cellular Physiology, 2020, 235, 9974-9991.	4.1	3
10	Cutaneous A \hat{l}^2 -Non-nociceptive, but Not C-Nociceptive, Dorsal Root Ganglion Neurons Exhibit Spontaneous Activity in the Streptozotocin Rat Model of Painful Diabetic Neuropathy in vivo. Frontiers in Neuroscience, 2020, 14, 530.	2.8	14
11	Molecular Mechanisms of Adiponectin-Induced Attenuation of Mechanical Stretch-Mediated Vascular Remodeling. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	9
12	Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, $A\hat{l}^2$ -nociceptors, moderate pressure receptors and their receptive field depths. Current Opinion in Physiology, 2019, 11, 125-146.	1.8	22
13	CD28 Superagonistic Activation of T Cells Induces a Tumor Cell-Like Metabolic Program. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 60-69.	1.6	4
14	Activation of K _v 7 channels with the anticonvulsant retigabine alleviates neuropathic pain behaviour in the streptozotocin rat model of diabetic neuropathy. Journal of Drug Targeting, 2019, 27, 1118-1126.	4.4	17
15	Inducible nitric oxide synthase inhibition by 1400W limits pain hypersensitivity in a neuropathic pain rat model. Experimental Physiology, 2018, 103, 535-544.	2.0	21
16	Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapyâ€induced neuropathy. European Journal of Pain, 2018, 22, 810-821.	2.8	52
17	Hyperpolarization-activated cyclic nucleotide–gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain, 2018, 159, 1392-1402.	4.2	23
18	Association of Interleukin-6 and Other Cytokines with Self-Reported Pain in Prostate Cancer Patients Receiving Chemotherapy. Pain Medicine, 2018, 19, 1058-1066.	1.9	15

#	Article	IF	Citations
19	In vitro effects of hydrogen peroxide on rat uterine contraction before and during pregnancy. Croatian Medical Journal, 2018, 59, 327-334.	0.7	4
20	Membrane potential oscillations are not essential for spontaneous firing generation in L4 A $\hat{l}^2\hat{a}$ enfferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels. Experimental Physiology, 2018, 103, 1145-1156.	2.0	1
21	Effects of ZD7288, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, on term-pregnant rat uterine contractility inâvitro. Theriogenology, 2017, 90, 141-146.	2.1	10
22	L5 spinal nerve axotomy induces sensitization of cutaneous L4 \hat{Al}^2 -nociceptive dorsal root ganglion neurons in the rat in vivo. Neuroscience Letters, 2016, 624, 72-77.	2.1	16
23	Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw. Neuroscience Letters, 2016, 613, 25-29.	2.1	21
24	PG110, A Humanized Anti-NGF Antibody, Reverses Established Pain Hypersensitivity in Persistent Inflammatory Pain, but not Peripheral Neuropathic Pain, Rat Models. Pain Medicine, 2016, 17, 2082-2094.	1.9	16
25	Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neuroscience and Biobehavioral Reviews, 2016, 61, 225-238.	6.1	29
26	Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience, 2015, 301, 121-133.	2.3	27
27	Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience, 2015, 295, 90-102.	2.3	38
28	TREK2 Expressed Selectively in IB4-Binding C-Fiber Nociceptors Hyperpolarizes Their Membrane Potentials and Limits Spontaneous Pain. Journal of Neuroscience, 2014, 34, 1494-1509.	3.6	107
29	Nuclear Factor-erythroid 2 (NF-E2) p45-related Factor-2 (Nrf2) Modulates Dendritic Cell Immune Function through Regulation of p38 MAPK-cAMP-responsive Element Binding Protein/Activating Transcription Factor 1 Signaling. Journal of Biological Chemistry, 2013, 288, 22281-22288.	3.4	48
30	Loss of Transcription Factor Nuclear Factor-Erythroid 2 (NF-E2) p45-related Factor-2 (Nrf2) Leads to Dysregulation of Immune Functions, Redox Homeostasis, and Intracellular Signaling in Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 10556-10564.	3.4	63
31	Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain, 2012, 153, 1824-1836.	4.2	83
32	Leak K+ channel mRNAs in dorsal root ganglia: Relation to inflammation and spontaneous pain behaviour. Molecular and Cellular Neurosciences, 2012, 49, 375-386.	2.2	104
33	Differential input to dorsal horn dorsal spinocerebellar tract neurons in mid- and low-lumbar segments from upper cervical spinal cord in the cat. Neuroscience Research, 2012, 72, 227-235.	1.9	2
34	Expression and properties of hyperpolarizationâ€activated current in rat dorsal root ganglion neurons with known sensory function. Journal of Physiology, 2012, 590, 4691-4705.	2.9	46
35	Erratum to "Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and non-nociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias―[Pain 153 (9) (2012) 1824–1836]. Pain, 2012, 153, 2302.	4.2	0
36	HCN1 and HCN2 in Rat DRG Neurons: Levels in Nociceptors and Non-Nociceptors, NT3-Dependence and Influence of CFA-Induced Skin Inflammation on HCN2 and NT3 Expression. PLoS ONE, 2012, 7, e50442.	2.5	68

#	Article	IF	CITATIONS
37	Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current (Ih) in C-but not Al´-nociceptors. Pain, 2012, 153, 900-914.	4.2	107
38	Immunostaining for the $\hat{l}\pm 3$ isoform of the Na ⁺ /K ⁺ -ATPase is selective for functionally identified muscle spindle afferents <i>in vivo</i>). Journal of Physiology, 2010, 588, 4131-4143.	2.9	18
39	265 PERIPHERAL NERVE AXOTOMY BUT NOT TISSUE INFLAMMATION CAUSE INCREASED HCN-1 IMMUNOREACTIVITY IN RAT DRGS. European Journal of Pain, 2007, 11, S117-S117.	2.8	O
40	145 SPONTANEOUS PAIN BEHAVIOUR IS RELATED TO SPONTANEOUS FIRING FREQUENCY IN UNINJURED NOCICEPTIVE C-FIBRE NEURONS AFTER SPINAL NERVE AXOTOMY. European Journal of Pain, 2007, 11, S63-S63.	2.8	0
41	Spontaneous Pain, Both Neuropathic and Inflammatory, Is Related to Frequency of Spontaneous Firing in Intact C-Fiber Nociceptors. Journal of Neuroscience, 2006, 26, 1281-1292.	3.6	374
42	Intense Isolectin-B4 Binding in Rat Dorsal Root Ganglion Neurons Distinguishes C-Fiber Nociceptors with Broad Action Potentials and High Nav1.9 Expression. Journal of Neuroscience, 2006, 26, 7281-7292.	3.6	226
43	Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the ratin vivo. Journal of Physiology, 2005, 565, 927-943.	2.9	190
44	trkA Is Expressed in Nociceptive Neurons and Influences Electrophysiological Properties via Nav1.8 Expression in Rapidly Conducting Nociceptors. Journal of Neuroscience, 2005, 25, 4868-4878.	3.6	130
45	${\sf A}\hat{\sf I}^2$ -fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Research Reviews, 2004, 46, 131-145.	9.0	294
46	Spinal nerve injury increases the percentage of cold-responsive DRG neurons. NeuroReport, 2004, 15, 457-460.	1.2	15
47	Sensory and electrophysiological properties of guineaâ€pig sensory neurones expressing Na v 1.7 (PN1) Na + channel α subunit protein. Journal of Physiology, 2003, 546, 565-576.	2.9	190
48	The TTXâ€Resistant Sodium Channel Na v 1.8 (SNS/PN3): Expression and Correlation with Membrane Properties in Rat Nociceptive Primary Afferent Neurons. Journal of Physiology, 2003, 550, 739-752.	2.9	310
49	The Presence and Role of the Tetrodotoxin-Resistant Sodium Channel Na _v 1.9 (NaN) in Nociceptive Primary Afferent Neurons. Journal of Neuroscience, 2002, 22, 7425-7433.	3.6	227
50	Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig. Neuroscience, 2001, 102, 669-679.	2.3	50
51	Differences in the size of the somatic action potential overshoot between nociceptive and non-nociceptive dorsal root ganglion neurones in the guinea-pig. Neuroscience, 2001, 108, 479-491.	2.3	36
52	Time Course and Nerve Growth Factor Dependence of Inflammation-Induced Alterations in Electrophysiological Membrane Properties in Nociceptive Primary Afferent Neurons. Journal of Neuroscience, 2001, 21, 8722-8733.	3.6	101
53	Changes in somatic action potential shape in guinea-pig nociceptive primary afferent neurones during inflammationin vivo. Journal of Physiology, 1999, 520, 565-576.	2.9	59
54	Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. Journal of Physiology, 1998, 513, 857-872.	2.9	174

#	ARTICLE	IF	CITATIONS
55	Indications for coupling between feline spinocervical tract neurones and midlumbar interneurones. Experimental Brain Research, 1998, 119, 39-46.	1.5	7
56	Modulation of Responses of Four Types of Feline Ascending Tract Neurons by Serotonin and Noradrenaline. European Journal of Neuroscience, 1997, 9, 1375-1387.	2.6	56
57	Electrophysiological evidence that spinomesencephalic neurons in the cat may be excited via spinocervical tract collaterals. Experimental Brain Research, 1997, 116, 477-484.	1.5	6
58	Effects of upper cervical spinal cord stimulation on neurons in the lumbosacral enlargement of the cat: spinothalamic tract neurons. Neuroscience, 1995, 68, 1237-1246.	2.3	8
59	Differential ascending projections from neurons in the cat's lateral cervical nucleus. Experimental Brain Research, 1994, 101, 375-84.	1.5	5
60	Lumbosacral spinal neurons in the cat that are candidates for being activated by collaterals from the spinocervical tract. Neuroscience, 1993, 57, 153-165.	2.3	11
61	Interactions between adrenergic systems, anaesthetic and TRH analogue induced analeptic effects on VBT transmission. Neuropeptides, 1991, 20, 9-15.	2.2	0