
Laiche Djouhri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1787633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spontaneous Pain, Both Neuropathic and Inflammatory, Is Related to Frequency of Spontaneous Firing in Intact C-Fiber Nociceptors. Journal of Neuroscience, 2006, 26, 1281-1292.	3.6	374
2	The TTXâ€Resistant Sodium Channel Na v 1.8 (SNS/PN3): Expression and Correlation with Membrane Properties in Rat Nociceptive Primary Afferent Neurons. Journal of Physiology, 2003, 550, 739-752.	2.9	310
3	Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Research Reviews, 2004, 46, 131-145.	9.0	294
4	The Presence and Role of the Tetrodotoxin-Resistant Sodium Channel Na _v 1.9 (NaN) in Nociceptive Primary Afferent Neurons. Journal of Neuroscience, 2002, 22, 7425-7433.	3.6	227
5	Intense Isolectin-B4 Binding in Rat Dorsal Root Ganglion Neurons Distinguishes C-Fiber Nociceptors with Broad Action Potentials and High Nav1.9 Expression. Journal of Neuroscience, 2006, 26, 7281-7292.	3.6	226
6	Sensory and electrophysiological properties of guineaâ€pig sensory neurones expressing Na v 1.7 (PN1) Na + channel α subunit protein. Journal of Physiology, 2003, 546, 565-576.	2.9	190
7	Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the ratin vivo. Journal of Physiology, 2005, 565, 927-943.	2.9	190
8	Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. Journal of Physiology, 1998, 513, 857-872.	2.9	174
9	trkA Is Expressed in Nociceptive Neurons and Influences Electrophysiological Properties via Nav1.8 Expression in Rapidly Conducting Nociceptors. Journal of Neuroscience, 2005, 25, 4868-4878.	3.6	130
10	Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current (I h) in C- but not Al -nociceptors. Pain, 2012, 153, 900-914.	4.2	107
11	TREK2 Expressed Selectively in IB4-Binding C-Fiber Nociceptors Hyperpolarizes Their Membrane Potentials and Limits Spontaneous Pain. Journal of Neuroscience, 2014, 34, 1494-1509.	3.6	107
12	Leak K+ channel mRNAs in dorsal root ganglia: Relation to inflammation and spontaneous pain behaviour. Molecular and Cellular Neurosciences, 2012, 49, 375-386.	2.2	104
13	Time Course and Nerve Growth Factor Dependence of Inflammation-Induced Alterations in Electrophysiological Membrane Properties in Nociceptive Primary Afferent Neurons. Journal of Neuroscience, 2001, 21, 8722-8733.	3.6	101
14	Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain, 2012, 153, 1824-1836.	4.2	83
15	HCN1 and HCN2 in Rat DRG Neurons: Levels in Nociceptors and Non-Nociceptors, NT3-Dependence and Influence of CFA-Induced Skin Inflammation on HCN2 and NT3 Expression. PLoS ONE, 2012, 7, e50442.	2.5	68
16	Loss of Transcription Factor Nuclear Factor-Erythroid 2 (NF-E2) p45-related Factor-2 (Nrf2) Leads to Dysregulation of Immune Functions, Redox Homeostasis, and Intracellular Signaling in Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 10556-10564.	3.4	63
17	Changes in somatic action potential shape in guinea-pig nociceptive primary afferent neurones during inflammationin vivo. Journal of Physiology, 1999, 520, 565-576.	2.9	59
18	Modulation of Responses of Four Types of Feline Ascending Tract Neurons by Serotonin and Noradrenaline. European Journal of Neuroscience, 1997, 9, 1375-1387.	2.6	56

LAICHE DJOUHRI

#	Article	IF	CITATIONS
19	Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapyâ€induced neuropathy. European Journal of Pain, 2018, 22, 810-821.	2.8	52
20	Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig. Neuroscience, 2001, 102, 669-679.	2.3	50
21	Nuclear Factor-erythroid 2 (NF-E2) p45-related Factor-2 (Nrf2) Modulates Dendritic Cell Immune Function through Regulation of p38 MAPK-cAMP-responsive Element Binding Protein/Activating Transcription Factor 1 Signaling. Journal of Biological Chemistry, 2013, 288, 22281-22288.	3.4	48
22	Expression and properties of hyperpolarizationâ€activated current in rat dorsal root ganglion neurons with known sensory function. Journal of Physiology, 2012, 590, 4691-4705.	2.9	46
23	Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience, 2015, 295, 90-102.	2.3	38
24	Differences in the size of the somatic action potential overshoot between nociceptive and non-nociceptive dorsal root ganglion neurones in the guinea-pig. Neuroscience, 2001, 108, 479-491.	2.3	36
25	<p>Umbelliferone Inhibits Spermatogenic Defects and Testicular Injury in Lead-Intoxicated Rats by Suppressing Oxidative Stress and Inflammation, and Improving Nrf2/HO-1 Signaling</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4003-4019.	4.3	30
26	Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neuroscience and Biobehavioral Reviews, 2016, 61, 225-238.	6.1	29
27	Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience, 2015, 301, 121-133.	2.3	27
28	Hyperpolarization-activated cyclic nucleotide–gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain, 2018, 159, 1392-1402.	4.2	23
29	Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, Aβ-nociceptors, moderate pressure receptors and their receptive field depths. Current Opinion in Physiology, 2019, 11, 125-146.	1.8	22
30	Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw. Neuroscience Letters, 2016, 613, 25-29.	2.1	21
31	Inducible nitric oxide synthase inhibition by 1400W limits pain hypersensitivity in a neuropathic pain rat model. Experimental Physiology, 2018, 103, 535-544.	2.0	21
32	Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling. Journal of Inflammation Research, 2021, Volume 14, 5349-5365.	3.5	19
33	Immunostaining for the α3 isoform of the Na ⁺ /K ⁺ -ATPase is selective for functionally identified muscle spindle afferents <i>in vivo</i> . Journal of Physiology, 2010, 588, 4131-4143.	2.9	18
34	Activation of K _v 7 channels with the anticonvulsant retigabine alleviates neuropathic pain behaviour in the streptozotocin rat model of diabetic neuropathy. Journal of Drug Targeting, 2019, 27, 1118-1126.	4.4	17
35	L5 spinal nerve axotomy induces sensitization of cutaneous L4 Aβ-nociceptive dorsal root ganglion neurons in the rat in vivo. Neuroscience Letters, 2016, 624, 72-77.	2.1	16
36	PG110, A Humanized Anti-NGF Antibody, Reverses Established Pain Hypersensitivity in Persistent Inflammatory Pain, but not Peripheral Neuropathic Pain, Rat Models. Pain Medicine, 2016, 17, 2082-2094.	1.9	16

LAICHE DJOUHRI

#	Article	IF	CITATIONS
37	Spinal nerve injury increases the percentage of cold-responsive DRG neurons. NeuroReport, 2004, 15, 457-460.	1.2	15
38	Association of Interleukin-6 and Other Cytokines with Self-Reported Pain in Prostate Cancer Patients Receiving Chemotherapy. Pain Medicine, 2018, 19, 1058-1066.	1.9	15
39	Cutaneous Aβ-Non-nociceptive, but Not C-Nociceptive, Dorsal Root Ganglion Neurons Exhibit Spontaneous Activity in the Streptozotocin Rat Model of Painful Diabetic Neuropathy in vivo. Frontiers in Neuroscience, 2020, 14, 530.	2.8	14
40	Lumbosacral spinal neurons in the cat that are candidates for being activated by collaterals from the spinocervical tract. Neuroscience, 1993, 57, 153-165.	2.3	11
41	Effects of ZD7288, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, on term-pregnant rat uterine contractility inÂvitro. Theriogenology, 2017, 90, 141-146.	2.1	10
42	Molecular Mechanisms of Adiponectin-Induced Attenuation of Mechanical Stretch-Mediated Vascular Remodeling. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	9
43	Effects of upper cervical spinal cord stimulation on neurons in the lumbosacral enlargement of the cat: spinothalamic tract neurons. Neuroscience, 1995, 68, 1237-1246.	2.3	8
44	Follicular dendritic cells. Journal of Cellular Physiology, 2022, 237, 2019-2033.	4.1	8
45	Indications for coupling between feline spinocervical tract neurones and midlumbar interneurones. Experimental Brain Research, 1998, 119, 39-46.	1.5	7
46	Electrophysiological evidence that spinomesencephalic neurons in the cat may be excited via spinocervical tract collaterals. Experimental Brain Research, 1997, 116, 477-484.	1.5	6
47	Mutual inter-regulation between iNOS and TGF-β1: Possible molecular and cellular mechanisms of iNOS in wound healing. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165850.	3.8	6
48	Differential ascending projections from neurons in the cat's lateral cervical nucleus. Experimental Brain Research, 1994, 101, 375-84.	1.5	5
49	In vitro effects of hydrogen peroxide on rat uterine contraction before and during pregnancy. Croatian Medical Journal, 2018, 59, 327-334.	0.7	4
50	CD28 Superagonistic Activation of T Cells Induces a Tumor Cell-Like Metabolic Program. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 60-69.	1.6	4
51	Changes in expression of Kv7.5 and Kv7.2 channels in dorsal root ganglion neurons in the streptozotocin rat model of painful diabetic neuropathy. Neuroscience Letters, 2020, 736, 135277.	2.1	3
52	A possible role for inducible arginase isoform (Al) in the pathogenesis of chronic venous leg ulcer. Journal of Cellular Physiology, 2020, 235, 9974-9991.	4.1	3
53	Differential input to dorsal horn dorsal spinocerebellar tract neurons in mid- and low-lumbar segments from upper cervical spinal cord in the cat. Neuroscience Research, 2012, 72, 227-235.	1.9	2
54	L5 Spinal Nerve Axotomy Induces Distinct Electrophysiological Changes in Axotomized L5- and Adjacent L4-Dorsal Root Ganglion Neurons in Rats In Vivo. Journal of Neurotrauma, 2021, 38, 330-341.	3.4	2

LAICHE DJOUHRI

#	Article	IF	CITATIONS
55	Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβâ€afferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels. Experimental Physiology, 2018, 103, 1145-1156.	2.0	1
56	A Golgi study of neurons in the camel cerebellum (Camelus dromedarius). Anatomical Record, 2021, , .	1.4	1
57	Involvement of caveolae in hyperglycemia-induced changes in adiponectin and leptin expressions in vascular smooth muscle cells. European Journal of Pharmacology, 2022, 919, 174701.	3.5	1
58	Interactions between adrenergic systems, anaesthetic and TRH analogue induced analeptic effects on VBT transmission. Neuropeptides, 1991, 20, 9-15.	2.2	0
59	265 PERIPHERAL NERVE AXOTOMY BUT NOT TISSUE INFLAMMATION CAUSE INCREASED HCN-1 IMMUNOREACTIVITY IN RAT DRGS. European Journal of Pain, 2007, 11, S117-S117.	2.8	0
60	145 SPONTANEOUS PAIN BEHAVIOUR IS RELATED TO SPONTANEOUS FIRING FREQUENCY IN UNINJURED NOCICEPTIVE C-FIBRE NEURONS AFTER SPINAL NERVE AXOTOMY. European Journal of Pain, 2007, 11, S63-S63.	2.8	0
61	Erratum to "Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and non-nociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias―[Pain 153 (9) (2012) 1824–1836]. Pain, 2012, 153, 2302.	4.2	ο