Christopher A Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1787415/publications.pdf

Version: 2024-02-01

30 papers 3,601 citations

304743 22 h-index 454955 30 g-index

32 all docs

32 docs citations

times ranked

32

4864 citing authors

#	Article	IF	Citations
1	Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature, 1988, 336, 73-76.	27.8	694
2	Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature, 1988, 335, 271-274.	27.8	476
3	Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature, 2016, 540, 443-447.	27.8	349
4	Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 2016, 166, 1016-1027.	28.9	325
5	Discovery of a proteinaceous cellular receptor for a norovirus. Science, 2016, 353, 933-936.	12.6	241
6	The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1. PLoS Pathogens, 2010, 6, e1000823.	4.7	192
7	Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature, 1994, 371, 250-252.	27.8	163
8	Structure and Intracellular Targeting of the SARS-Coronavirus Orf7a Accessory Protein. Structure, 2005, 13, 75-85.	3.3	157
9	Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor. Cell, 2019, 177, 1725-1737.e16.	28.9	104
10	Structural Basis of Differential Neutralization of DENV-1 Genotypes by an Antibody that Recognizes a Cryptic Epitope. PLoS Pathogens, 2012, 8, e1002930.	4.7	103
11	Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity, 2021, 54, 1290-1303.e7.	14.3	101
12	RANKL Employs Distinct Binding Modes to Engage RANK and the Osteoprotegerin Decoy Receptor. Structure, 2012, 20, 1971-1982.	3.3	100
13	Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9201-E9210.	7.1	82
14	SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity against the Spike. MBio, 2021, 12, .	4.1	81
15	LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature, 2020, 588, 308-314.	27.8	78
16	Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement. PLoS Pathogens, 2014, 10, e1004072.	4.7	51
17	Structural Determinants of Herpesvirus Entry Mediator Recognition by Murine B and T Lymphocyte Attenuator. Journal of Immunology, 2008, 180, 940-947.	0.8	33
18	Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. MBio, 2018, 9, .	4.1	32

#	Article	IF	CITATIONS
19	Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nature Communications, 2020, 11, 5278.	12.8	30
20	Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature, 2021, 598, 672-676.	27.8	27
21	Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. Journal of Experimental Medicine, 2020, 217, .	8.5	26
22	An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host and Microbe, 2020, 27, 428-440.e9.	11.0	26
23	Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses. Journal of Experimental Medicine, 2021, 218, .	8.5	22
24	Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports, 2019, 26, 1585-1597.e4.	6.4	18
25	Oxidative Refolding from Inclusion Bodies. Methods in Molecular Biology, 2014, 1140, 145-157.	0.9	18
26	Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. Journal of Virology, 2021, 95, e0084421.	3.4	13
27	Manipulation of receptor oligomerization as a strategy to inhibit signaling by TNF superfamily members. Science Signaling, 2014, 7, ra80.	3.6	11
28	Improved integration of single-cell transcriptome and surface protein expression by LinQ-View. Cell Reports Methods, 2021, 1, 100056.	2.9	10
29	A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. ELife, 2018, 7, .	6.0	7
30	Isolation of a Potently Neutralizing and Protective Human Monoclonal Antibody Targeting Yellow Fever Virus. MBio, 2022, 13, e0051222.	4.1	7