
Paul Karplus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1785062/publications.pdf Version: 2024-02-01

DALLI KADDILIS

#	Article	IF	CITATIONS
1	Evaluating Peroxiredoxin Sensitivity Toward Inactivation by Peroxide Substrates. Methods in Enzymology, 2013, 527, 21-40.	0.4	31
2	Better models by discarding data?. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1215-1222.	2.5	202
3	Cysteine Dioxygenase Structures from pH4 to 9: Consistent Cys-Persulfenate Formation at Intermediate pH and a Cys-Bound Enzyme at Higher pH. Journal of Molecular Biology, 2013, 425, 3121-3136.	2.0	59
4	Observed octameric assembly of a <i>Plasmodium yoelii</i> peroxiredoxin can be explained by the replacement of native "ballâ€andâ€socket―interacting residues by an affinity tag. Protein Science, 2013, 22, 1445-1452.	3.1	10
5	Nonplanar peptide bonds in proteins are common and conserved but not biased toward active sites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 449-453.	3.3	63
6	Peroxiredoxins in Parasites. Antioxidants and Redox Signaling, 2012, 17, 608-633.	2.5	83
7	(φ,Ï`)2 Motifs: A Purely Conformation-Based Fine-Grained Enumeration of Protein Parts at the Two-Residue Level. Journal of Molecular Biology, 2012, 416, 78-93.	2.0	25
8	Peroxiredoxins as Molecular Triage Agents, Sacrificing Themselves to Enhance Cell Survival During a Peroxide Attack. Molecular Cell, 2012, 45, 275-278.	4.5	18
9	The Tumor Suppressor Merlin Controls Growth in Its Open State, and Phosphorylation Converts It to a Less-Active More-Closed State. Developmental Cell, 2012, 22, 703-705.	3.1	56
10	Linking Crystallographic Model and Data Quality. Science, 2012, 336, 1030-1033.	6.0	1,637
11	Structure-based Insights into the Catalytic Power and Conformational Dexterity of Peroxiredoxins. Antioxidants and Redox Signaling, 2011, 15, 795-815.	2.5	289
12	Symerythrin Structures at Atomic Resolution and the Origins of Rubrerythrins and the Ferritin-Like Superfamily. Journal of Molecular Biology, 2011, 413, 177-194.	2.0	16
13	Cysteine-Based Redox Switches in Enzymes. Antioxidants and Redox Signaling, 2011, 14, 1065-1077.	2.5	327
14	Thiol dioxygenases: unique families of cupin proteins. Amino Acids, 2011, 41, 91-102.	1.2	98
15	Conformational studies of the robust 2-Cys peroxiredoxin Salmonella typhimurium AhpC by solution phase hydrogen/deuterium (H/D) exchange monitored by electrospray ionization mass spectrometry. International Journal of Mass Spectrometry, 2011, 302, 93-100.	0.7	8
16	A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 699-706.	2.5	25
17	A Diiron Protein Autogenerates a Valine-Phenylalanine Cross-Link. Science, 2011, 332, 929-929.	6.0	16
18	Iron-containing urease in a pathogenic bacterium. Proceedings of the National Academy of Sciences of the United States of America. 2011. 108. 13095-13099.	3.3	64

#	Article	IF	CITATIONS
19	Using a conformation-dependent stereochemical library improves crystallographic refinement of proteins. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 834-842.	2.5	36
20	The Crystal Structure of Dynein Intermediate Chain-Light Chain Roadblock Complex Gives New Insights into Dynein Assembly. Journal of Biological Chemistry, 2010, 285, 22566-22575.	1.6	39
21	Engineering of Fluorescent Reporters into Redox Domains to Monitor Electron Transfers. Methods in Enzymology, 2010, 474, 1-21.	0.4	5
22	Structural Evidence that Peroxiredoxin Catalytic Power Is Based on Transition-State Stabilization. Journal of Molecular Biology, 2010, 402, 194-209.	2.0	156
23	Evolutionary Origin of a Secondary Structure: π-Helices as Cryptic but Widespread Insertional Variations of α-Helices That Enhance Protein Functionality. Journal of Molecular Biology, 2010, 404, 232-246.	2.0	143
24	Characterization of Sulfoxygenation and Structural Implications of Human Flavin-Containing Monooxygenase Isoform 2 (FMO2.1) Variants S195L and N413K. Drug Metabolism and Disposition, 2009, 37, 1785-1791.	1.7	10
25	Multivalency in the Assembly of Intrinsically Disordered Dynein Intermediate Chain. Journal of Biological Chemistry, 2009, 284, 33115-33121.	1.6	66
26	Conformation Dependence of Backbone Geometry in Proteins. Structure, 2009, 17, 1316-1325.	1.6	94
27	On the occurrence of linear groups in proteins. Protein Science, 2009, 18, 1321-1325.	3.1	37
28	Structure of the Cdt1 Câ€ŧerminal domain: Conservation of the winged helix fold in replication licensing factors. Protein Science, 2009, 18, 2252-2264.	3.1	33
29	Typical 2 ys peroxiredoxins – structures, mechanisms and functions. FEBS Journal, 2009, 276, 2469-2477.	2.2	401
30	Structural Changes Common to Catalysis in the Tpx Peroxiredoxin Subfamily. Journal of Molecular Biology, 2009, 393, 867-881.	2.0	51
31	A forward-looking suggestion for resolving the stereochemical restraints debate: ideal geometry functions. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 335-336.	2.5	14
32	Catalytic Cycle of Human Glutathione Reductase Near 1ÂÃ Resolution. Journal of Molecular Biology, 2008, 382, 371-384.	2.0	97
33	The Interplay of Ligand Binding and Quaternary Structure in the Diverse Interactions of Dynein Light Chain LC8. Journal of Molecular Biology, 2008, 384, 954-966.	2.0	36
34	Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8209-8214.	3.3	146
35	The Arg-Gly-Asp–Containing, Solvent-Exposed Loop of Ptr ToxA Is Required for Internalization. Molecular Plant-Microbe Interactions, 2008, 21, 315-325.	1.4	79
36	Self-masking in an Intact ERM-merlin Protein: An Active Role for the Central α-Helical Domain. Journal of Molecular Biology, 2007, 365, 1446-1459.	2.0	111

#	Article	IF	CITATIONS
37	Structure and Dynamics of LC8 Complexes with KXTQT-Motif Peptides: Swallow and Dynein Intermediate Chain Compete for a Common Site. Journal of Molecular Biology, 2007, 371, 457-468.	2.0	75
38	Structural Characterization of Zinc-deficient Human Superoxide Dismutase and Implications for ALS. Journal of Molecular Biology, 2007, 373, 877-890.	2.0	122
39	C-terminal truncation of rabbit flavin-containing monooxygenase isoform 2 enhances solubility. Archives of Biochemistry and Biophysics, 2006, 450, 149-156.	1.4	6
40	In-house sulfur SAD phasing: a case study of the effects of data quality and resolution cutoffs. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 707-716.	2.5	26
41	Song: Chymotrypsin (to the tune of "eight days a week,―by the beatles). Biochemistry and Molecular Biology Education, 2006, 34, 287-287.	0.5	1
42	Song: Enzymes speed reactions (to the tune of "we will rock you,―by queen). Biochemistry and Molecular Biology Education, 2006, 34, 286-286.	0.5	0
43	Song: Learn about the buffer (generic rap). Biochemistry and Molecular Biology Education, 2006, 34, 285-285.	0.5	0
44	Identification and Characterization of Bacterial Cysteine Dioxygenases: a New Route of Cysteine Degradation for Eubacteria. Journal of Bacteriology, 2006, 188, 5561-5569.	1.0	92
45	Crystal Structure of Mammalian Cysteine Dioxygenase. Journal of Biological Chemistry, 2006, 281, 18723-18733.	1.6	148
46	Oxidized and synchrotron cleaved structures of the disulfide redox center in the N-terminal domain ofSalmonella typhimuriumAhpF. Protein Science, 2005, 14, 2414-2420.	3.1	39
47	Structure of Ptr ToxA: An RGD-Containing Host-Selective Toxin from Pyrenophora tritici-repentis Â. Plant Cell, 2005, 17, 3190-3202.	3.1	119
48	Crystal Structure of a Novel Plasmodium falciparum 1-Cys Peroxiredoxin. Journal of Molecular Biology, 2005, 346, 1021-1034.	2.0	92
49	A Novel Mechanism of Chemoprotection by Sulforaphane. Cancer Research, 2004, 64, 5767-5774.	0.4	477
50	The EBP50-moesin interaction involves a binding site regulated by direct masking on the FERM domain. Journal of Cell Science, 2004, 117, 1547-1552.	1.2	68
51	PROTEINSULFENICACIDS INREDOXSIGNALING. Annual Review of Pharmacology and Toxicology, 2004, 44, 325-347.	4.2	542
52	Structural Aspects of Plant Ferredoxin : NADP+Oxidoreductases. Photosynthesis Research, 2004, 81, 303-315.	1.6	37
53	Glutathione Reductase of the Malarial Parasite Plasmodium falciparum: Crystal Structure and Inhibitor Development. Journal of Molecular Biology, 2003, 328, 893-907.	2.0	120
54	Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling. Science, 2003, 300, 650-653.	6.0	1,236

#	Article	IF	CITATIONS
55	Structure of the Active N-terminal Domain of Ezrin. Journal of Biological Chemistry, 2003, 278, 4949-4956.	1.6	95
56	The Role of Glutamine 114 in Old Yellow Enzyme. Journal of Biological Chemistry, 2002, 277, 2138-2145.	1.6	42
57	Synthesis and Characterization of Photolabile o-Nitrobenzyl Derivatives of Urea. Journal of Organic Chemistry, 2002, 67, 8827-8831.	1.7	19
58	Crystal Structure of the Antioxidant Enzyme Glutathione Reductase Inactivated by Peroxynitrite. Journal of Biological Chemistry, 2002, 277, 2779-2784.	1.6	113
59	Relatedness of baculovirus and gypsy retrotransposon envelope proteins. BMC Evolutionary Biology, 2001, 1, 1.	3.2	82
60	AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. FEBS Journal, 2000, 267, 6126-6133.	0.2	118
61	Competition between C-terminal Tyrosine and Nicotinamide Modulates Pyridine Nucleotide Affinity and Specificity in Plant Ferredoxin-NADP+ Reductase. Journal of Biological Chemistry, 2000, 275, 10472-10476.	1.6	81
62	Site-Directed Mutagenesis Improves Catalytic Efficiency and Thermostability of Escherichia coli pH 2.5 Acid Phosphatase/Phytase Expressed in Pichia pastoris. Archives of Biochemistry and Biophysics, 2000, 382, 105-112.	1.4	109
63	Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain. Cell, 2000, 101, 259-270.	13.5	555
64	The Flavin Environment in Old Yellow Enzyme. Journal of Biological Chemistry, 1999, 274, 9357-9362.	1.6	25
65	A productive NADP+ binding mode of ferredoxin-NADP + reductase revealed by protein engineering and crystallographic studies. Nature Structural Biology, 1999, 6, 847-853.	9.7	181
66	Characterization of metal-substituted Klebsiella aerogenes urease. Journal of Biological Inorganic Chemistry, 1999, 4, 468-477.	1.1	34
67	Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Nature Structural Biology, 1998, 5, 267-271.	9.7	147
68	On the Active Site of Old Yellow Enzyme. Journal of Biological Chemistry, 1998, 273, 32753-32762.	1.6	111
69	Probing the Function of the Invariant Glutamyl Residue 312 in Spinach Ferredoxin-NADP+ Reductase. Journal of Biological Chemistry, 1998, 273, 34008-34015.	1.6	52
70	Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Structural Biology, 1997, 4, 269-275.	9.7	786
71	Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nature Structural Biology, 1997, 4, 810-818.	9.7	349
72	Refined crystal structure and mutagenesis of human granulocyte-macrophage colony-stimulating factor. , 1996, 26, 304-313.		57

#	Article	IF	CITATIONS
73	Charge is the major discriminating factor for glutathione reductase versus trypanothione reductase inhibitors. Bioorganic and Medicinal Chemistry, 1996, 4, 1247-1253.	1.4	66
74	Kinetics and Crystallographic Analysis of Human Glutathione Reductase in Complex with a Xanthene Inhibitor. Journal of Biological Chemistry, 1996, 271, 8101-8107.	1.6	73
75	Characterization of the Mononickel Metallocenter in H134A Mutant Urease. Journal of Biological Chemistry, 1996, 271, 18632-18637.	1.6	33
76	Overexpression ofCrithidia fasciculatatrypanothione reductase and crystallization using a novel geometry. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 337-341.	2.5	2
77	Consensus preferred hydration sites in six FKBP12-drug complexes. Proteins: Structure, Function and Bioinformatics, 1995, 23, 1-11.	1.5	18
78	Probing the Roles of Active Site Residues in D-Xylose Isomerase. Journal of Biological Chemistry, 1995, 270, 22895-22906.	1.6	66
79	Refined Crystal Structure of Spinach Ferredoxin Reductase at 1.7 Ã Resolution: Oxidized, Reduced and 2′-Phospho-5′-AMP Bound States. Journal of Molecular Biology, 1995, 247, 125-145.	2.0	196
80	Structure-function relations for ferredoxin reductase. Journal of Bioenergetics and Biomembranes, 1994, 26, 89-99.	1.0	110
81	Structural comparisons among the short-chain helical cytokines. Structure, 1994, 2, 159-173.	1.6	162
82	Atomic Structures of the Human Immunophilin FKBP-12 Complexes with FK506 and Rapamycin. Journal of Molecular Biology, 1993, 229, 105-124.	2.0	1,158
83	Crystallization of Old Yellow Enzyme Illustrates an Effective Strategy for Increasing Protein Crystal Size. Journal of Molecular Biology, 1993, 234, 502-507.	2.0	7
84	Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes. Journal of Molecular Biology, 1992, 227, 934-937.	2.0	53
85	Low-resolution structure of recombinant human granulocyte-macrophage colony stimulating factor. Journal of Molecular Biology, 1991, 221, 55-60.	2.0	23
86	Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science, 1991, 252, 839-842.	6.0	638
87	Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. Science, 1991, 254, 1779-1782.	6.0	218
88	A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. FEBS Journal, 1989, 178, 693-703.	0.2	143
89	Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2Ã resolution. Journal of Molecular Biology, 1989, 210, 163-180.	2.0	299
90	Refined structure of porcine cytosolic adenylate kinase at 2.1 Ã resolution. Journal of Molecular Biology, 1988, 199, 359-371.	2.0	251

#	Article	IF	CITATIONS
91	Refined structure of glutathione reductase at 1.54 Ã resolution. Journal of Molecular Biology, 1987, 195, 701-729.	2.0	498